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Abstract— This paper studies the hybrid dynamics of simple 
biped robot models under possible stick-slip transitions. Unlike 
almost all existing works in the literature that assume perfect 
sticking of the stance foot, we explore the case of insufficient 
friction which induces foot slippage. Numerical simulations of 
passive dynamic walking reveal the onset of stable periodic 
solutions that involve stick-slip transitions. In the case of a biped 
with joint torques actuation, we demonstrate how one can induce 
and stabilize stick-slip gaits which significantly reduce the 
energetic cost of walking and enforce slippage even for high 
friction.        
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I.  INTRODUCTION  

In mobile robots, legged locomotion is commonly used in 
order to negotiate unstructured terrains or indoor environments 
where traditional wheeled and tracked vehicles have limited 
maneuverability or accessibility. Analysis and control of 
legged robots are currently subject to extensive research 
efforts, motivated primarily by the need to develop 
autonomous mobile robots for various applications such as 
military and security [1], rehabilitation assistance [2], 
education and entertainment [3,4] and even planetary 
exploration [5,6]. Unlike quasistatic locomotion, in which the 
robot moves slowly through a sequence of equilibrium 
postures, in dynamic legged locomotion (DLL) the robot 
constantly undergoes unsteady motion of falling, followed by 
placement of a free foot on the ground and transfer of the 
support in a cyclic pattern (i.e. gait). Many works on legged 
robots are inspired by biological locomotion of insects and 
large animals [7,8], e.g. the well-known RHEX robot [9]. The 
dynamics of legged locomotion is typically governed by highly 
nonlinear ODE’s that are interleaved with discrete events of 
“jumps” induced by foot impacts and contact transitions, 
giving rise to a hybrid dynamical system with nonsmooth 
behavior  [10,11]. One of the most classical and simple models 
of DLL is McGeer’s bipedal walker [12] which is a two-link 
robot that walks passively down a shallow slope. The dynamics 
of the two-link model, named compass biped, is further 
analyzed by Goswami in [13]. In his work [12], McGeer also 
introduces and analyzes an even simpler and low-dimensional 
model – the rimless spoked wheel, which is further analyzed 
by Coleman and Ruina [14]. A central theme in DLL is the 
orbital stability of the hybrid periodic solutions, which can be 
assessed via linearization of the Poincaré map [15]. Stability 
can be achieved either passively as in [12-14], or by using 
active feedback control of the motor torques at the robot’s 
joints according to sensory information [16,17]. Feedback 

control of DLL has been a highly active field of research in the 
last decade. Focusing on bipedal robots, sophisticated 
nonlinear techniques have been employed, with emphasis on 
advanced geometric notions such as controlled symmetries 
 [18], Routhian reduction  [19], zero dynamics  [20], transverse 
linearization  [21] and virtual nonholonomic constraints  [22]. A 
key limitation of all the theoretical models mentioned above is 
that they assume that the foot-ground contact is a stationary 
pivot point, and that no foot slippage occurs throughout the 
motion and during impacts. This assumption is not always 
physically realistic, since it requires that friction at the contact 
is sufficiently large in order to enforce sticking. Moreover, 
perturbations caused by external forces, vibrations, or local 
surface irregularity can kinematically impose initial foot 
slippage even for large friction. Additionally, experimental 
measurements indicate that foot slippage is ubiquitous also in 
biological legged locomotion [23,24]. While few works 
incorporated friction considerations in designing gaits that 
avoid slippage [25,26], and some works studied detection and 
estimation of  slippage from sensory data [27], the dynamics of 
legged locomotion with possible stick-slip transitions has rarely 
been considered. (An exception is the two-link hopper 
analyzed in [28]). 

The goal of this paper is to study simple models of bipedal 
dynamic walking that involve stick-slip transitions at the feet 
assuming Coulomb’s dry friction model, and numerically 
investigate the effect of foot slippage. The paper studies the 
models of rimless spoked wheel and the compass biped under 
passive dynamics on a slope, and also the controlled torque-
actuated compass biped on a horizontal plane. When the 
friction is not sufficient to maintain contact sticking, foot 
slippage starts to evolve. Numerical simulations reveal the 
existence of periodic solutions that involve foot slippage and 
stick-slip transitions. In the case of a torque-actuated compass 
biped, some of these gaits have improved energetic efficiency 
compared to sticking gaits, and can be stabilized via feedback 
control. The structure of the paper is as follows. The next 
section gives a general formulation of the equations of motion. 
Section III studies the rimless spoked wheel, Section IV studies 
the passive compass biped on a slope, and Section V studies 
the torque-actuated compass biped on a horizontal plane.  

II. GENERAL FORMULATION 

We now formulate the equations of motion of a general 
bipedal robot consisting of rigid links, which walks on a plane 
in two dimensions. It is assumed that one foot (the “stance 
foot”) of the robot maintains point contact with the ground, 
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while the other foot (the “swing foot”) is free. When the swing 
foot hits the ground an impact occurs, followed by an 
instantaneous velocity change, and the feet switch roles. The 
motion then continues in a cyclic pattern.  

A. Continuous-time equations 

Let Nq  be the coordinates describing the robot’s 

configuration. The velocity of the stance foot’s endpoint can 
be decomposed into components normal and tangent to the 

ground as ( ) w q q
n n

v and ( ) . w q q
t t

v When the contact 

point is stationary, the velocities satisfy the constraint  
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The robot’s dynamic equations of motion are given by Euler-
Lagrange equations as (cf. [29]): 

 ( ) ( , ) ( )   M q q B q q G q Eu + W f  T , (2) 

where u m are controlled input torques (if they exist) and  

 f
T

t nf f  are the tangential and normal components of 

the contact force which enforces the constraint (1). Note that 
( )W q in (1) and (2) can be interpreted as the robot’s Jacobian 

with respect to the contact point, and that f can be regarded as 
the vector of Lagrange multipliers, cf. [29]. The state vector of 
the system x augments the positions and velocities 

( , ) .x = q q T  In order to compute the contact force f, one has 

to differentiate the constraint (1) with respect to time and 
substitute the expression for the accelerations q  from (2) in 

order to obtain (cf. [29]): 

    11 1( , ) ,
    f q q WM W WM B G Eu Wq T (3) 

where the dependence on ,q q  on the right hand side of (3) is 

suppressed for brevity. Importantly, the constraint (1) can be 
enforced only if the contact force f in (3) satisfies the friction 
constraint given by  

 
t n

f f  (4) 

where  is Coulomb's coefficient of friction. When inequality 
(4) is not satisfied, tangential slippage of the contact point  

starts to evolve, i.e. 0.
t

v  In that case, according to 

Coulomb's friction model, the tangential contact force ft 
opposes the direction of slippage, and depends on the normal 
force fn as 

 sgn( )
t ntf v f  . (5) 

(For simplicity, we do not distinguish between static and 
kinetic friction throughout this work). The contact force f 
under slippage cannot be computed as in (3). Instead, 

differentiation of ( ) 0 w q q
n

and using (2) and (5) gives:  

    1
1 1

( , ) ,
    q q w M w M B G Eu w q T T

n n

T

nnf   (6) 

where ( ) ( ) sgn( ) ( )n ttv Γ q w q w q , while ft is determined 

according to (5). Contact slippage occurs until vt vanishes. 

Then, a transition to sticking contact occurs, if the contact 
force f in (3) satisfies (4). Otherwise, slip reversal occurs and 
vt  changes its sign. 

B. Impact law 

 The tangential and normal velocities of the swing foot are 
given by  
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When the swing foot hits the ground, an impact occurs. It is 

assumed that impulsive contact force F at the colliding foot 
causes instantaneous change in the velocities at the time of 
impact t=t#, while the configuration q remains unchanged 
q=q#. The velocity jump due to the impact is then given by  

 1

# # # #
( () )   q q M W F   Tt t  (8) 

where the superscript ‘+’ denotes the time right after the 
impact while the superscript ‘–‘ denotes the time right before 
it. The subscripts ‘#’ in (8) indicate that M(q) and )(W q are 

evaluated at q=q#. For more details on derivation of the impact 
equations see for example [11,30] and [31].  

It is commonly assumed that the impact is perfectly 
plastic. That is, it results in sticking contact at the colliding 

foot, i.e. 
#

( ) 0.swing t  v  Using (7) and (8), the contact impulse 

can then be obtained as: 

   11
# # #

  F WM W Wq    T . (9) 

Substituting (9) into (8) then gives a linear relation between 

the post-impact and pre-impact velocities # #, . q q   Typically, 

after the impact the coordinates are also relabeled in order to 
reflect the exchange of roles of the two legs. Thus, the change 
of the state vector x is expressed by the linear transformation 

# ##( ) x χ q x .  

The assumption of a perfectly plastic impact that induces 
contact sticking holds only if the components of the contact  

impulse F  given in (9) satisfy the friction constraint 

 .
ntF F   (10) 

If this constraint is not satisfied, the impact must induce 

contact slippage, i.e. 
#

( ) 0.tv t    Assuming no rebound, i.e. 

#
( ) 0,nv t   the normal contact impulse can then be obtained as  

   11
# # # #F ( ) ( )

   w q M w q q   T TT
n n n ,  (11) 

where 
## #( ) sgn( ( )) ( ). Γ w q w q  

n ttv t The tangential 

impulse is then obtained as 
#

F sgn( ( )) F  
t t nv t .  

C. Hybrid periodic solutions and their stability 

In order to study periodic solutions of the biped’s hybrid 
dynamics (i.e. gaits) and assess their stability, we briefly 
introduce the notions of post-impact Poincaré section and 
Poincaré map (also called ‘stride map’ in [8]). The Poincaré 
section  is a codimension-1 subspace of the state space which 



 

 

corresponds to post-impact states. The Poincaré map, defined 
as Æ, maps an initial state x0 at a post-impact time to the 

post-impact state 
#

x  right after the next impact. A periodic 

solution of the hybrid dynamics corresponds to a post-impact 
state x* which is a fixed point of the Poincaré map, i.e. 
(x*)=x*. Typically, the Poincaré map and its fixed point 
cannot be determined analytically, except for extremely 
simplified models without slippage such as [14] and [32]. 
Instead, one usually has to compute them via numerical 
integration of (2). The local stability of a gait is determined by 
the linearization matrix of the Poincaré map about its fixed 
point, denoted D(x*), as follows. The gait is asymptotically 
stable under local state perturbations iff all eigenvalues of the 
linearization matrix D(x*) lie inside the unit disc in the 
complex plane. Loosely speaking, an eigenvalue  
corresponds to deviations from x* that behave as the series k 
where k is the index of the impact events. (To be more precise, 
note that does not account for the coordinate of forward 
motion, and is thus restricted to a lower-dimensional subspace 
of , see [17] for more details and formal definitions). 

 

III. THE RIMLESS WHEEL 

In this section, the dynamics of the rimless wheel model 
[12,14] is considered. The rimless wheel is a star-like rigid 
body which consists of n evenly spaced spokes of length l, see 
Fig. 1. The mass of the body is m and its moment of inertia 
with respect to the center-of-mass is Ic. The wheel rolls on an 
inclined plane with slope angle . The lower spoke is in 
contact with the ground and represents the stance foot, until 
the next spoke, representing the swing foot, hits the ground. 
The unconstrained coordinates are q=(x,y,) where (x,y) 
denote the position of the contact point and  is the orientation 
of the lower spoke relative to the contact normal, which 
changes within the range [-/n, /n]. The wheel's equations of 
motion are given in (2) and (8), where  
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and 2

c
lI m   is the inertia ratio satisfying 0 1.    

A. No-slip dynamics – review 

We now briefly review the analysis of the wheel's dynamics 
in [14], which assumed that the contact point is always 
sticking. This assumption implies x=y=0, hence the single 
coordinate  is governed by an inverted pendulum equation:  

 sin 0     ,  (13) 

where time is normalized by the characteristic time 

 2
.

c c
mgl ml It  Eq. (13) is integrable due to conserva-

tion of total mechanical energy, which gives the relation  

 2 2

0 2 cos 2 cos
n


        

 
 

  . (14) 

where 0 (0)   is the initial angular velocity. Denoting the 

state vector as ( , )T x  , the impact law under sticking 
contact (9) followed by spokes relabeling is given by  
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Impact occurs when the next spoke hits the ground at angle 

#
 n   (i.e. this defines the Poincaré section ). 

Substituting the relation (14) and the impact law (15), the 
Poincaré map  which is a scalar map from initial angular 

velocity 0
 to post-impact velocity #

  is derived analytically 

in [14], and its fixed point, which corresponds to a periodic 
solution, is obtained as: 

      22 sin sin 1   n     . (16) 

The linearization ( ) D  is also derived in [14] as 
2( ) 1  D  , which is also the eigenvalue . This 

implies that the periodic solution is always locally 
asymptotically stable. Fig. 2 plots the periodic trajectory in 

( , )   plane for n=10, =1/3 and =13° (solid curve). The 

vertical line indicates the velocity jump due to impact, and the 
horizontal line represents the resetting of  from /n back to –
/n due to interchange of the spokes.  

One limitation which was not considered in [12,14] is the 
fact that the rimless wheel can maintain contact with the 
ground only if the normal contact force satisfies 

0
n

f throughout the entire motion, otherwise the contact will 

detach. Using (3), the normal contact force is obtained as  

Fig. 1: The rimless wheel model. 



 

 

Fig. 2: Trajectories in ( , )  plane for periodic solutions 
            with contact sticking (solid) and stick-slip (dashed) 
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Substituting the relation (14) and the initial condition 

0

*   in (16) which corresponds to the periodic solution, 

one obtains an inequality constraint in  and the wheel’s 
parameters n,,for which the periodic motion is possible 
without contact detachment. (Details are omitted due to space 
limitation.)  

B. Stick-slip dynamics 

We now analyze the dynamics of the rimless wheel under 
possible transitions between sticking contact (as in [12,14]) to 
slippage. According to inequality (4), the assumption of 
contact sticking holds as long as the ratio of tangential to 
normal components of the contact force, defined by 

,
t n

f f satisfies |<, where  is the coefficient of 

friction. Using (3), the expression for  is given by 
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Substituting the relation (14) and the initial condition 

0

*,   one obtains the ratio () along the periodic solution. 

Sticking contact can be enforced along the entire continuous-
time dynamics of the periodic solution as long as the 

coefficient of friction satisfies ,
c

  where c=max{|()|}. 

Fig. 3 plots () for parameter values n=10, =1/3 and =13°, 
for which one obtains c=0.91. In the following numerical 
simulations, the same values for n, and  are used while the 
friction coefficient  is varied. 
 

In order to ensure contact sticking also at the impact, the 
contact impulse must satisfy the frictional inequality (10). 
Assuming that at the pre-impact time the contact is sticking 

(i.e.  
#

0 x ), this yields the inequality  
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It can be shown (details omitted) that as long as >0, one 

obtains .  That is, if the contact does not slip during the 

continuous-time motion along the periodic solution then it will 
also not slip due to the impact. This is demonstrated in Fig. 3 
where the value of  is marked as 'x' at the right end of the 

plot, and satisfies 0.24 .  c    

When the coefficient of friction is lower than the critical 
value <c, the periodic solution without contact slippage 
cannot be maintained and contact slippage ( ) 0x t starts to 

evolve. Using (2), (5) and (6), The rimless wheel’s equations 
of motion under contact slippage are given by  
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Importantly, when <c, a new periodic solution begins to 
evolve, which involves transition to contact slippage, while 
the impact can still result in contact sticking at the post-impact 

time. Fig. 2 shows such a periodic solution in ( , )   plane, 

which was computed numerically for =0.4<c. The dashed 
curve indicates solution under contact slippage 0,x while 
the solid curve denotes solution under contact sticking. In 
order to assess the stability of this stick-slip periodic solution, 
the linearization eigenvalue of the Poincaré map was 
computed numerically under different coefficients of friction. 
Fig. 4 shows the eigenvalue as a function of the friction 
coefficient . For >c, the no-slip periodic solution is 
maintained, with eigenvalue of =0.734. When  is decreased 
below c, both the initial condition of the periodic solution 

* and the linearization eigenvalue  change continuously. 
Remarkably, the stick-slip periodic solutions exist for a wide 
range of the friction coefficient . Nevertheless, they are 
slightly less stable than the no-slip solution, with an increase 
of up to 5% in . At =0.25 the periodic solution disappears, 
because the impact can no longer maintain post-impact contact 

sticking 
#

0 x without exceeding the friction limitation (10). 
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Fig. 3: The force ratio  vs.  along the periodic solution 



 

 

IV. THE PASSIVE COMPASS BIPED 

In this section, we analyze the dynamics of the passive 
compass biped under contact sticking and/or slippage of the 
foot. The compass biped is a robotic model which consists of 
two rigid links (“legs”) of length l, connected by a passive 
rotary joint (“hip”), see Fig. 5. For simplicity, we assume that 
the two legs have identical point masses m located at a 
distance d from their endpoints (“feet”). Another point mass 
mh is located at the hip joint. The robot walks on an inclined 
plane with slope angle . The angle of the stance foot is 1 and 
the angle of the swing foot is 2, both measured with respect 
to the contact normal (y axis). The robot’s coordinates are 
chosen as q=(1,2,x,y), where (x,y) denote the position of the 
stance foot. The equations of motion of the robot are given by 
(2), where 
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The swing foot hits the ground when 1=2, so that the 
three-dimensional Poincaré section  is characterized by the 

state variables 
1 1 2

,( , .)     Stable periodic solutions for the 

compass biped have been demonstrated in [12] and 
extensively studied in [13], assuming sticking contact. As an 
example, we choose the parameter values l=0.8, d=0.5, m=4, 
mh=2, g=9.8, and =1°. Using numerical simulations, a 
periodic solution is found, which corresponds to the post-

impact values *

1
0.149,  *

1
0.733 and *

2
0.501.  The 

trajectories of 1 and 2 in ( , )   plane are shown in Fig. 6. 

The linearization matrix of the Poincaré map D(x*) has three 
eigenvalues, whose maximal absolute value is 

max
0.71 1,  indicating that the periodic solution is stable.  

Next, we use (3) in order to compute the ratio  of 
tangential-to-normal contact forces at the stance foot. The 
ratio t along the periodic solution is shown in Fig. 7 (solid 
curve). The plot indicates that the minimal value of friction 
coefficient required to enforce contact sticking is 

0.175.
c

 Moreover, the ratio   of the tangential-to-normal 

impulse at the impact is marked as 'x' at the right end of the 

plot, and its value is given by 0.145 .  c   This indicates 

that as long as ,
c

  the contact maintains sticking at the 

impact as well.  
 

When the friction coefficient is decreased below the 
critical value c, a new periodic solution evolves, which 
involves transition to contact slippage. For small changes from 

c, the impact still satisfies    and results in contact 

sticking. Therefore, the post-impact Poincaré section is still 
three-dimensional. Fig. 8 shows such a periodic solution 
(marked by A) for =0.14<c. The dashed curves indicate 
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Fig. 5: The compass biped model 
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solutions under contact slippage 0,x while the solid curves 
denote solutions under contact sticking. In this periodic 
solution, the contact at the post-impact time is sticking, i.e. 

# 0. x  (The value of the impulse ratio   changes with the 

periodic solution, and still satisfies   ). The solution 

begins with an immediate transition to slipping forward, 
followed by switching to contact sticking, and then a transition 
to slipping backwards until the next impact. The maximal 
eigenvalue of D(x*) for this periodic solution was obtained 

as
max

0.8, indicating that the solution is still stable. Next, 

the friction coefficient was decreased continuously from c 
and the maximal eigenvalue max for the periodic solution was 
computed. Fig. 9 plots max as a function of  (solid curve). 
One can see that max increases upon decreasing . At =0.11, 
max crosses 1 and the periodic solution becomes unstable.  

 

In addition to this branch of periodic solutions with post-

impact sticking # 0, x  numerical search reveals the co-

existence of another type of periodic solutions with slippage at 

the post-impact time # 0. x The initial slippage is followed 

by transition back to contact sticking, and then reaching 
impact. These periodic solutions have a four-dimensional 
post-impact Poincaré section , which is characterized by the 

state variables 
21 1

, )( , .,  x    A periodic solution of this type is 

shown for =0.14 in Fig. 8 (marked as B). The maximal 
linearization eigenvalue is max=2.76, indicating that this 
periodic solution is highly unstable. Periodic solutions of this 
type were also found in the range 0.1 0.3,  and their 

maximal eigenvalue max as a function of  is shown as the 
dashed curve in Fig. 9. It can be seen that these solutions are 
always unstable. Remarkably, these periodic solutions exist 
also for >c. That is, they co-exist even with no-slip 
solutions for large friction. 

V. THE ACTUATED COMPASS BIPED 

In this section, we analyze the dynamics of the compass 
biped walking on a horizontal plane and powered by actuation 
torques at the ankle joint (i.e. the stance foot's contact point) 
and the hip joint. We study both open-loop and closed loop 
control of the joint torques, and compare between the no-slip 

gait and the stick-slip gaits with and without post-impact 
slippage. In particular, we compute the energetic cost of 
walking, which was studied in [33]. The expressions in the 
equations of motion (2) of the actuated compass biped are 
almost identical to those in (21), with =0 implying a 
horizontal plane, and the terms of the control torques given by 

1

2

1 0 0 0

1 1 0 0
 
   
     

E  ,         u

T



 

where 1 is the ankle torque and 2 is the hip torque (Fig. 5).  
 

Gait I: We begin by studying open-loop control of the 
actuation torques under contact sticking. A simple way to 
choose the torques 1(t) and 2(t) is prescribing a periodic 
trajectory of the joint angles i(t) and compute the 
corresponding input torques u(t) by substituting (t), (t)q q and 

(t)q into (2). Fig. 10 plots the torques i(t) which are 

computed by choosing the trajectory of i(t) given in Fig. 6 on 
a horizontal plane, for the same values of physical parameters 
chosen in the previous section. Interestingly, i(t) display very 
small variations during the gait. Thus, we choose to 
approximate them by constant values as 1=-2.73 and 2=0.54. 
(It is assumed that the robot is capable of detecting which foot 
is currently in contact, and applies the ankle torque 1 at that 
foot). This is also very convenient since the dynamic 
equations in (2) under constant input u are time-invariant and 
one can find hybrid periodic solutions without restrictions on 
their time period. Using numerical search, a periodic solution 
in found (not shown), which is very close to the original 
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solution appearing in Fig. 6. The maximal eigenvalue of the 
linearization matrix D(x*) is given by max = 0.713<1. (Very 
close to the original value max = 0.71 which was obtained for 
the trajectory of the passive walker in Fig. 6.  

 

The specific cost of a walking gait is defined in [33,34] as  

 
0

1
( )  Eu q(t)

T

mt

W
c = t dt

mgS mgS
 (22) 

where T is the period time, W is the total mechanical work 
expended by the actuators during a full period, S is the 
distance traveled in one period, and mg is the robot’s weight. 
This quantity is not quite meaningful for passive walking on a 
slope (cf. [34]), but can be used to compare different gaits of 
actuated walking. For the open-loop gait with constant 
actuation torques, the specific cost was computed as 
cmt=0.0173. The average speed of this gait, defined as 

,v = S T was obtained as  0.63=v . 
Next, we compute the ratio of tangential-to-normal forces 

(t) along this open-loop gait, which is plotted as a dashed 
curve in Fig. 7. One can see that the critical value of friction 
coefficient required in order to prevent slippage is c=0.194. 
When the friction coefficient is decreased below c a periodic 
gait with stick-slip transition begins to evolve, with sticking at 
the post-impact time. As a result, the specific cost cmt of the 
gait changes with , as plotted in Fig.11 (solid curve). One can 
see that upon decreasing , cmt is first increasing, and then 
decreasing. The reason for this behavior can be understood 
from the shape of (t) in Fig. 7, which indicates that when  is 
slightly lower than c, backward slippage evolves at the end of 
the gait, and when  is further decreased, additional forward 
slippage evolves at the beginning of the gait which 
compensates for the backwards slippage and slightly improves 
the energetic efficiency. Interestingly, upon decreasing , the 
average speed v  is monotonically decreasing (not shown), 
and the maximal stability eigenvalue max is increasing until 
the gait becomes unstable for =0.103, as shown in Fig. 12 
(solid curve). 

 

Gait II: Similar to the passive biped, one can generate a 
gait with post-impact slippage for the actuated biped. This is 
done by taking the kinematics of i(t) along a gait similar to 

the one from Fig. 8 (gait B), compute the required torques i(t) 
according to (2), and approximate them by constant values, 
which are given by 1=-0.69 and 2=0.12. Applying these 
torques under friction coefficient of =0.2, one obtains a 
periodic gait with post-impact slippage, as expected. 
Remarkably, this gait is very efficient, and has cmt=0.0044, 
which is 4-fold smaller than the cost of the no-slip gait. On the 
other hand, the average speed of this gait is 0.31,=v which is 
twice slower than the actuated no-slip gait. An explanation to 
the decrease in v  is that the angles 1=2 at the impact, which 
directly affect the step length, are reduced by half from the 
post-impact sticking gait A to post-impact slipping gait B (see 
Fig. 8), while the change in the period time is much smaller 
(0.75 to 0.7). More importantly, this gait is unstable, with 
maximal eigenvalue max = 1.225, thus it cannot be practically 
implemented.  

 

Gait III: In order to exploit the improved energetic 
efficiency of the post-impact slipping gait while avoiding the 
problem of its instability, the next step is to introduce a 
closed-loop feedback law for the actuation torques, as follows. 
As before, we choose a periodic reference trajectory of the 

joint angles 1 2
r r( ),  ( ),t t  which are taken from gait B in Fig. 8 

with post-impact slippage. The actuation torques are then 
determined by a PD control law with phase resetting [35,36] 

as:    i p i i d i i

r rk k ,( ) ( ) ( ) ( )              where 

#  t t  is the phase of the gait with respect to the time of 

the last impact t#. It is assumed here that the robot can detect 
the impact event and immediately “reset” the time of the 
reference trajectory. Note that even though this control law 
results in a non-autonomous dynamical system, it still enables 
obtaining periodic solutions without restrictions on their time 
period. Applying this control law with kp=kd=15 under =0.2 
results in a periodic gait with post-impact slippage which is 
different from the reference trajectory. This gait has specific 
cost of cmt=0.0055, which is slightly less efficient than the 
open-loop actuated gait. Nevertheless, the maximal stability 
eigenvalue is max = 0.37, so that the gait is highly stable. The 
specific cost cmt for the three different controls as a function of 
 is shown in Fig. 11, while the maximal stability eigenvalue 
max is shown in Fig. 12. One can see that the feedback control 
law stabilizes the energetically efficient gait of post-impact 
slippage. Importantly, the gait exists under the same control 
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law and reference trajectory for a wide range of the friction 
coefficient , including also >c. That is, this control law is 
robust with respect to changes in , and indirectly enforces 
foot slippage even for large friction for which a non-slipping 
gait co-exists. One challenging open problem is a systematic 
design of the reference trajectory in order to enlarge the step 
length and improve both speed and efficiency. 

VI. CONCLUSION 

In this paper, we numerically investigated simple and low-
dimensional models of dynamic bipedal walking under 
possible foot slippage. We have found stable and unstable 
periodic solutions with stick-slip transitions for passive 
walking of the rimless wheel and the compass biped models. 
For the actuated compass biped on a horizontal plane, we have 
shown that a PD control law with phase reset can stabilize a 
co-existing (otherwise unstable) periodic gait with post-impact 
slippage, yielding decrease in the average speed and 
significant improvement in the energetic efficiency. The 
performance of this control law is remarkably robust with 
respect to changes in the friction coefficient, and enforces foot 
slippage even for large friction.  To conclude, the influence of 
foot slippage on dynamic legged locomotion is far from being 
completely understood, but the present work showed an initial 
glimpse into this challenging problem, and will hopefully 
motivate further investigation.  
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