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Symmetries and gaits for Purcell’s three-link
microswimmer model

Emiliya Gutman and Yizhar Or

Abstract—Robotic locomotion typically involves using gaits —
periodic changes of kinematic shape, which induce net motion
of the body in a desired direction. An example is robotic
microswimmers, which are inspired by motion of swimming
microorganisms. One of the most famous theoretical models of
a microswimmer is Purcell’s planar three-link swimmer, whose
structure possesses two axes of symmetry. Several works analyzed
gaits for robotic three-link systems based on body-fixed velocity
integrals. Using this approach, finite motion in desired directions
can only be obtained approximately. In this work we propose
gaits which are based on analysis of the system’s structural
symmetries, and generate exact motion along principal directions
without net rotation. Another gait that produces almost pure
rotation is presented, and bounds on the small-amplitude residual
translation are obtained by using perturbation expansion. Next,
the theory is extended to more realistic swimmers which have
only one symmetry axis. Gaits for such swimmers which generate
net translation are proposed, and their small-amplitude motion
is analyzed using perturbation expansion. The theoretical results
are demonstrated by using numerical simulations and conducting
controlled motion experiments with a robotic macro-swimmer
prototype in a highly viscous fluid.

I. INTRODUCTION

Locomotion is defined as the ability of a living creature, a
mobile robot or a vehicle to propel itself by means of physical
interaction with the surrounding environment. A typical way
of locomotion is using gaits, which are periodic changes in the
internal shape, in order to generate net motion of the body. In
the literature of robotics and nonlinear control, locomotion sys-
tems and their gaits are usually analyzed using the concept of
geometric mechanics [1], [2], which involves differential and
Riemannian geometry and group theory, or by using notions
of nonholonomic systems and nonlinear control theory [3]–
[5]. One of the well-studied theoretical models of locomotion
systems is microswimmers [6], which are greatly inspired by
motion of swimming microorganisms [7]. This research topic
has recently gained increasing interest due to its promising
potential for development of robotic microswimmers [8], [9],
which are planned to be used for biomedical applications such
as minimally invasive surgery and targeted drug delivery [10],
[11].

Swimming at the micro-scale is governed by low Reynolds
number hydrodynamics, where viscous drag effects are dom-
inating while inertial effects are negligible [12]. The fluid
is governed by Stokes equations and its interaction with the
swimmer is quasistatic, making the dynamics time-invariant.
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This enables formulation of the equations of motion as first-
order ordinary differential equations which fit well into the
framework of the geometric theory of locomotion [1], [2], [5].
In the literature on nonlinear control systems, several works
study controllability aspects of microswimming systems [13],
[14], while other works analyze their geometric structure [6],
[15]. In the general physics and fluid mechanics literature,
although theoretical formulation of microswimming dates back
to the pioneering work of G. I. Taylor in 1951 [16], the
classical paper of E. M. Purcell on “Life at low Reynolds
number” [17] is one of the most cited works in the field,
while later works studied various theoretical models of simple
microswimmers [18], [19]. Purcell proposed a simple mi-
croswimmer model which is composed of three elongated links
connected by two revolute joints, whose angles ϕ1(t), ϕ2(t)
are prescribed in a periodic gait, See Fig. 1. The swimmer
possesses two axes of symmetry, and Purcell stated, without
providing any explicit formulation, that under the square-
shaped gait shown in Fig. 1(b) the net motion is along the mid-
dle link’s longitudinal axis due to symmetry considerations.
The proof of this statement was left as an exercise to the reader
in [17], and one of the objectives of this paper is to provide
this proof as part of a systematic analysis of symmetries and
gaits for this swimmer. Only 26 years after Purcell’s paper, the
dynamics of the three-link swimmer was explicitly formulated
by Becker et al [20] by using slender body theory [21], [22].
In later works, Tam and Hosoi [23] studied optimization of
gaits for generation of maximal displacement or energetic
efficiency, and Giraldi et al [24] studied similar problems from
perspective of optimal control. Avron and Raz [25] studied the
swimmer’s symmetries and proposed a simplified symmetric
version of the model which displays one-dimensional linear
motion only.

Several works studied the control of large robotic swimmers
in just the opposite physical extreme of “perfect fluid” where
drag effects are neglected while inertial effects are domi-
nating [26]–[28]. Remarkably, in these systems the structure
of the resulting control system is very similar to that of
microswimmers, where both systems are governed by linear
relations between shape velocities and body velocities, known
as principal connections [2]. Several other types of robotic
locomotion systems were analyzed using similar concepts,
where the principal connections are typically imposed by
nonholonomic no-slip constraints of wheels or blades, as in
the classical examples of Chaplygin’s sleigh [2], snakeboard
[29], and roller-racer [30]. While these systems are affected by
combination of principal connections and evolution of momen-
tum, the kinematic snake model studied in [31], which consists
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of three links supported by wheeled axles, is governed only
by principal connections due to kinematic no-slip constraints.
Thus, its equations of motion share a similar structure as
the three-link swimmer, either in perfect or in highly viscous
fluid1.

Recent works on analyzing gaits for robotic three-link
systems have used the concept of body-velocity integral (BVI),
in which the velocities expressed in a body-fixed frame are
integrated in order to find the net body motion under a
given gait [32]. The main disadvantage of this method is
that one cannot directly relate BVI to finite motion of the
body due to non-commutativity of the Lie group SE(2) of
translation and rotation in the plane. In [27], the semidirect-
product structure of SE(2) is exploited for generating gaits
that achieve a desired net rotation, without controlling the
resulting net translation. The works of Hatton and Choset
[28], [33] proposed a systematic choice of optimal coordinates
that minimize the approximation error of BVI. Many of the
works on three-link systems have made intuitive use of their
structural symmetries for generation of symmetric gaits. This
dates back to Purcell’s original square gait (Fig. 1(b)), and
to Tam and Hosoi [23] who limited their search of optimal
gaits to those with two particular axes of symmetry that lead
to net translation in longitudinal direction. Avron and Raz
[25] identified symmetries of Purcell’s swimmer in terms of
body-fixed velocities, which were not extended to finite body
motion. Shammas and Choset [31] proposed gaits with certain
symmetries for the kinematic snake model, but their symmetry
arguments were again limited to body velocities only.

The goal of this paper is to complement all these works
mentioned above by presenting a systematic analysis of the
symmetries of Purcell’s three link microswimmer model and
their effect on generating gaits with particular symmetries
in order to achieve desired net motion. Unlike many works
that study optimal gaits which maximize displacement or
minimize time or energy expenditure (cf. [13], [14], [23],
[29], [34]), and are typically limited to numerical search,
our work focuses only on generating gaits that result in net
motion along a desired direction, and make exact claims based
on symmetry arguments. We propose two generic types of
symmetric gaits that achieve net translation in longitudinal
and transversal directions. Then we propose another type of
gait that achieves almost pure net rotation, and find bounds
on the residual translation under small amplitudes by us-
ing perturbation expansion. Next, we analyze more realistic
models of three-link swimmers that possess only one axis of
symmetry. We propose gaits that generate pure net translation,
and obtain the scaling of small-amplitude motion by using
perturbation expansion. The theoretical results are verified via
numerical simulations and also demonstrated experimentally
by presenting motion measurement of a macro-scale robotic
swimmer in a highly viscous fluid. While our work focuses
on Purcell’s swimmer, the results are fairly general and apply
to any three-link locomotion system with similar symmetries.

1Interestingly, the kinematic snake suffers from singularity at symmetric
configurations where the joint angles satisfy ϕ1 = ϕ2 (see Fig. 1(a)) since
the two nonholonomic constraints become linearly dependent. This singularity
does not occur at the three-link swimmer models.

We do not make use of terminology of differential geometry
and group theory, and all the symmetries are formulated
in terms of algebraic operations on matrices in SE(2) that
represent planar rigid-body transformations. This makes our
analysis highly accessible to a broad audience of the robotics
community.

The organization of the paper is as follows. The next
section introduces Purcell’s swimmer model and formulates its
dynamic equations. In section III the swimmer’s symmetries of
body velocities are formulated. In addition, reflection operators
on trajectories of shape changes are defined, and their effect
on symmetries of finite motion is analyzed. In section IV
three different types of symmetric gaits are studied, which
generate net translation in principal directions and almost pure
rotation. Section V analyzes the swimmer’s motion scaling
under small-amplitude gaits. In section VI, gaits for swimmers
with only one axis of symmetry are analyzed. Section VII
presents experimental results of a macro-scale robotic swim-
mer prototype. The concluding section discusses limitations of
the results and proposes some possible directions for extension
of the research. An Appendix contains technical details and
proofs of all theorems. Supplemntary material contains video
movies of three gaits of the robotic swimmer and animations
of numerical simulations of the swimmers under several gaits.

II. PROBLEM FORMULATION

We now formulate the dynamics of Purcell’s three link
swimmer. The swimmer, depicted in Fig. 1(a), consists of three
slender rigid links whose lengths are l0, l1 and l2. The links are
connected by two rotary joints whose angles are denoted by
ϕ1 and ϕ2. The planar motion of the swimmer is described
by coordinates q = (x, y, θ)T which give the position of
the center of the middle link and its orientation angle. The
shape of the swimmer is described by the two joint angles
ϕ = (ϕ1, ϕ2)

T .
First, we express the kinematic relations of links’ velocities.

The velocity of the ith link is described by the linear velocity
of its center vi and the link’s angular velocity ωi, which are
augmented in the vector Vi = (vi, ωi) ∈ R3. The velocity Vi

is related to the body velocity q̇ and shape velocity ϕ̇ as:

Vi = Ti(q,ϕ)q̇+Ei(q,ϕ)ϕ̇. (1)

The matrices Ti(q,ϕ) and Ei(q,ϕ) for i = 0, 1, 2 are given
by:

T0 =

 1 0 0
0 1 0
0 0 1

 , E0 =

 0 0
0 0
0 0



T1=

 1 0 −0.5lo sinαo − 0.5l1 sinα1
0 1 0.5lo cosαo + 0.5l1 cosα1
0 0 1

 ,E1=

 −0.5l1 sinα1 0
0.5l1 cosα1 0

1 0



T2=

 1 0 0.5lo sinαo + 0.5l2 sinα2
0 1 −0.5lo cosαo − 0.5l2 cosα2
0 0 1

 ,E2=

 0 −0.5l2 sinα2
0 0.5l2 cosα2
0 −1

 ,

(2)
where αo = θ, α1 = θ + ϕ1 and α2 = θ − ϕ2.

It is assumed that the fluid motion is governed by Stokes
equations [12]. In order to formulate the dynamic equation of
the swimmer we use Resistive Force Theory (RFT) [21], [22].
Under this theory, the viscous drag force f i and torque τi on



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 3

ϕ

θ
(x,y)

x

y

ϕ2

l0
l2

l1

(a)

ϕ0

-ϕ0

-ϕ0

ϕ0

Start hereϕ2

ϕ1

(b)

Fig. 1: (a) Purcell’s three-link swimmer model. (b) Square
gait of Purcell’s swimmer that describes the changes of the
swimmer’s joint angles in ϕ1 − ϕ2 plane which generate net
motion in x direction.

the ith slender link under planar motion are proportional to its
linear and angular velocities according to the relations:

f i = −c(i)t li(vi · ti)ti − c(i)n li(vi · ni)ni

τi = − 1

12
c(i)n l3iωi,

(3)

Where li is the link’s length, ti = (cosαi, sinαi)
T is a unit

vector in its axial direction, and ni = (− sinαi, cosαi)
T is a

unit vector in the normal direction. The resistance coefficients
in (3) for the normal and axial directions are given by c(i)n =
2c(i)t = 4πµ/ log(li/a) where a is the radius of the links and
µ is the fluid’s viscosity. It is assumed that the hydrodynamic
interaction between the links of the swimmer is negligible.
Denoting the vector of forces and torques on the ith link as
Fi = (f i, τi), the relations (3) can be written in matrix form
as

Fi = −Ri(q,ϕ)Vi, where

Ri(q,ϕ) = c(i)t li

 1 + sin2 αi − cosαi sinαi 0
− cosαi sinαi 1 + cos2 αi 0

0 0
1

6
l2i


(4)

The matrix Ri in (4) is called the resistance tensor, and is
known to be symmetric and positive definite for any finite-
sized body [12]. Using the kinematic relations (1), the net
hydrodynamic force and torque acting on the swimmer’s body
are given by

Fb =
2∑

i=0

TT

i Fi = −
2∑

i=0

TT

i Ri(Tiq̇+Eiϕ̇). (5)

Assuming quasistatic motion, the swimmer is in static
equilibrium Fb = 0. Using (5), the dynamic equations of
swimming, which are a linear relation between the swimmer’s
shape velocity ϕ̇ and body velocity q̇, are obtained as

q̇ = G(q,ϕ)ϕ̇,

where

G(q,ϕ) = −
(∑2

i=0
TT

i RiTi

)−1 (∑2

i=0
TT

i RiEi

)
.

(6)

From the expressions for Ti and Ri in (2) and (4), it is clear
that the square matrix in (6) is symmetric and positive definite,
and hence invertible. This is in contrast to locomotion systems
based on kinematic constraints where singular configurations
are possible, as in the kinematic snake model [31].

III. SYMMETRIES OF VELOCITY AND FINITE MOTION

In this section, symmetries of the swimmer’s motion are an-
alyzed. We begin with formulating symmetries of the velocity
relation (6), which were already analyzed in [25]. Then we
define reflection operators on trajectories of shape change and
formulate symmetries of finite body motion.

A. Velocity symmetries ( [25])

The first symmetry is called gauge symmetry [15]. It repre-
sent the fact that in an unbounded fluid domain, the relation
(6) is invariant under rigid body motion of q [1], [2], [5].

1) Gauge symmetry: The matrix G(q,ϕ) in (6) can be
decomposed into:

G(q,ϕ) = D(θ)G(ϕ),

where D(θ)=

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (7)

This special structure is due to the fact that the body velocity
expressed in body-fixed reference frame depends only on the
shape variables ϕ and their velocities ϕ̇. The matrix G(ϕ)
in (7) is precisely the principal connection of the swimmer’s
motion [1], [2], [26]. The next two symmetries are of different
nature, since they are related to additional structure of G(ϕ)
due to geometric symmetries of the three-link swimmer.

2) Axial Symmetry: This symmetry is due to the fact that
the swimmer possesses symmetry about the longitudinal axis
of the middle link, see Fig. 2(a). This is expressed by the
relation:

G(−ϕ) =

 −1 0 0
0 1 0
0 0 1

G(ϕ) , f1(G(ϕ)) (8)
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(a) (b)

Fig. 2: Velocity Symmetries: (a) Axial Symmetry - influence of reversing the joint angles ϕi on body velocity q̇. (b) Front-Back
symmetry - influence of swapping the joint angles ϕi and their velocities ϕ̇i on body velocity q̇.
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Fig. 3: Reflections of shape trajectories: (a) Axial reflection F1 - the trajectory F1(γ) is obtained by reversing the sign of
ϕi(t). (b) Front-back reflection F2 - the trajectory F2(γ) is obtained by swapping the angles ϕ1(t) and ϕ2(t). (c) Time reversal
reflection F3 - the trajectory F3(γ) obtained by time reversal of the motion along γ.

3) Front-Back Symmetry: This symmetry stems from the
fact that the swimmer’s two distal links are identical, i.e. l1=l2,
hence the swimmer possesses symmetry about the bisecting
line of the middle link, see Fig. 2(b). This relation can be
expressed as:

G(Sϕ) =

 −1 0 0
0 1 0
0 0 −1

G(ϕ)S , f2(G(ϕ))

where S =

[
0 1
1 0

]
.

(9)

The matrix S in (9) represents swapping between the front
and back links 1 and 2.

B. Finite Rigid-Body Motion and Finite Shape Changes

Unlike velocity relations which correspond to infinitesimal
motions, integration of rigid-body and shape velocities along
a finite time requires treatment of net body motion. Therefore,
we now define the homogenous matrix representation of rigid
body motion, and the notation of shape trajectory. A body po-
sition q = (x, y, θ)T can be represented by the homogeneous
rigid-body transformation matrix as:

A(q) =

 cos θ − sin θ x
sin θ cos θ y
0 0 1

 . (10)

A trajectory γ of shape changes is a time-parametrized change
of the joint angles γ = ϕ(t) = (ϕ1(t), ϕ2(t))

T for t ∈
[0, T ]. The net body motion q(T ) under initial conditions
q(0)=q0=(x0, y0, θ0)

T and shape changes along the trajectory
γ is obtained by integrating the dynamic equation (6) in time,
and is denoted by ψ(γ,q0). The following proposition reviews
a key result [1], [5], [15] which extends the gauge symmetry
property from velocity level (7) into finite motions generated
by shape trajectories. It states that any shape trajectory gener-
ates a particular net body motion relative to the starting body
frame. (This concept is often called the geometric phase of a
gait [1]).

Proposition 1 ( [1], [5], [15]). The net body motion under
initial conditions q0 and a given shape trajectory γ satisfies

A(ψ(γ,q0)) = A(q0)A(ψ(γ, 0)). (11)

The proof of the proposition appears in the Appendix.
Using this proposition, we can define: Aγ = A(ψ(γ, 0))
which is a transformation matrix that represents the swimmer’s
position after applying the shape trajectory γ under zero initial
conditions q(0)=0. Note that Aγ is independent of time
parametrization of the motion along the shape trajectory γ,
due to the time-invariance of (6).
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Fig. 4: Symmetries of Finite Motion: (a) P1 - change in net body motion under applying the axial reflection F1 to γ. (b) P2 -
change in net body motion under applying the front-back reflection F2 to γ. (c) P3 - change in net body motion under applying
the time reversal reflection F3 to γ.
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Fig. 5: Three types of symmetric gaits: (a) Gait 1 (Square Gait of Purcell in dashed lines) - the net motion is in x direction.
(b) Gait 2 (rectilinear loop in dashed lines) - the net motion is in y direction. (c) Gait 3 (rectilinear loop in dashed lines) - the
net motion is almost pure rotation.

C. Shape Trajectory Reflections

We now define three different reflection operators on shape
trajectories. These operators are necessary for extending the
velocity symmetries listed above to symmetries of finite rigid-
body motion of the swimmer. Consider a given shape tra-
jectory γ and its time parametrization ϕ(t) for t ∈ [0, T ].
The operator of axial reflection F1, which corresponds to sign
reversal of the joint angles, is defined as:

F1(ϕ(t)) = −ϕ(t) (12)

The operator of front-back reflection F2, which corresponds
to swapping of the two joint angles, is defined as:

F2(ϕ(t)) = Sϕ(t) (13)

where S is the swap matrix defined in (9). Finally, the operator
of time reversal F3 is defined as:

F3(ϕ(t)) = ϕ(T − t). (14)

A graphical representation of the three reflection operators’
action on shape trajectories γ in ϕ1−ϕ2 plane is shown in Fig.
3.

D. Symmetries of Finite Motion

We now use the reflection operators defined above in order
to formulate the symmetries of finite motions of the swimmer.

Consider a given shape trajectory γ and its time parametriza-
tion ϕ(t). The net rigid body motion under the action of
the shape change γ and zero initial conditions q(0) = 0
is denoted by ψ(γ, 0) = (x, y, θ)T . The following three
theorems summarize the inherited symmetries of finite rigid-
body motions obtained by time-integration along symmetry-
reflected shape trajectories by formulating the change in net
motion due to application of each of the three reflection
operators on the shape trajectory γ:

Theorem 1. Under the axial reflection operator F1, one
obtains:

AF1(γ) =

 cos θ sin θ x
− sin θ cos θ −y

0 0 1

 , P1(Aγ). (15)

Theorem 2. Under the front-back reflection operator F2, one
obtains:

AF2(γ) =

 cos θ sin θ −x
− sin θ cos θ y

0 0 1

 , P2(Aγ). (16)

Theorem 3. Under the time-reversal reflection operator F3,
one obtains:

AF3(γ) = A−1

γ =
[

cos θ sin θ −x cos θ − y sin θ
− sin θ cos θ x sin θ − y cos θ

0 0 1

]
, P3(Aγ)

(17)



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 6

Note that this theorem is strongly related to Purcell’s
classical scallop theorem [17], which stated that under a
reciprocal shape trajectory, the rigid-body motion cancels itself
and results in zero net motion.

The proofs of the theorems 1, 2 and 3 appear in the
Appendix. A graphical representation of the three symmetry
operators of finite rigid-body motion is shown in Fig. 4.

IV. SYMMETRIC GAITS

In this section we propose three types of symmetric gaits,
and analyze the resulting net rigid-body motion of the swim-
mer. A gait is defined as a shape trajectory γ that forms a
closed curve, and thus it can be applied repeatedly as a time-
periodic input. Each of the three gait types is decomposed
into a concatenation of four sub-paths γ1 to γ4 which are
connected at their endpoints according to γi+1(0) = γi(T )
for i=1 . . . 4, where i = {i mod 4}. Each of the three gait
types satisfies certain symmetries, so that its four sub-paths γi

are interrelated via reflection operators. This, in turn, affects
the net body motion under each of the three gaits, as detailed
below. Typical gaits from each type are shown in Fig. 5, where
the closed loops of dashed lines are representative rectilinear
gaits with angular amplitude of ϕ0.

A. Gait 1

Gait type 1 possesses two axes of symmetry along the lines
ϕ1=ϕ2 and ϕ1= − ϕ2 in ϕ1 − ϕ2 plane, as shown in Fig.
5(a), where the natural representative is Purcell’s square gait
from Fig. 1(b). Using the symmetries defined in the previous
section, it is now easy to prove Purcell’s statement that this
type of symmetric gait results in motion along x direction
only. The four sub-paths of this gait satisfy the relations:

γ2 = F1 ◦ F2 ◦ F3(γ1)

γ3 = F1(γ1) (18)
γ4 = F2 ◦ F3(γ1)

Note that the endpoints of γ1 satisfy ϕ1(0)=ϕ2(0) and
ϕ1(T )= − ϕ2(T ). Denoting the net rigid-body motion under
the sub-path γ1 as ψ(γ1, 0) = (x, y, θ)T , one can obtain the
motion under each of the other sub-paths γ2 to γ4 by using
the symmetry theorems 1-3, as:

Aγ1
=

 cos θ − sin θ x
sin θ cos θ y
0 0 1


Aγ2

= P1(P2(P3(Aγ1 ))) =

 cos θ sin θ x cos θ + y sin θ
− sin θ cos θ −x sin θ + y cos θ

0 0 1



Aγ3
= P1(Aγ1

) =

 cos θ sin θ x
− sin θ cos θ −y

0 0 1


Aγ4

= P2(P3(Aγ1
)) =

 cos θ − sin θ x cos θ + y sin θ
sin θ cos θ x sin θ − y cos θ
0 0 1



Finally, in order to obtain the net rigid-body motion under
the entire gait γ, one has to invoke Proposition 1 and simply
multiply the four transformation matrices Aγi

, which yields:

Aγ = Aγ1
Aγ2

Aγ3
Aγ4

=

 1 0 4x
0 1 0
0 0 1

 (19)

We can see that the resulting net motion is only along x
direction without rotation, since the net-body motions of the
four sub-paths in directions of y and θ are cancelled while the
motion along x is summed.

B. Gait 2

The second gait type possesses symmetries of a figure-eight
shape (Fig. 5(b)), and results in net motion along y direction,
as proven below. The four sub-paths of the gait are related by
the following reflection operators:

γ2 = F1 ◦ F2 ◦ F3(γ1)

γ3 = F2(γ1) (20)
γ4 = F1 ◦ F3(γ1)

Note that the endpoints of γ1 satisfy ϕ1(0)=ϕ2(0)=0 and
ϕ1(T )= − ϕ2(T ). Using the symmetry theorems 1-3, the net
rigid-body motions under each sub-path are given by:

Aγ1
=

 cos θ − sin θ x
sin θ cos θ y
0 0 1


Aγ2

= P1(P2(P3(Aγ1
)))

Aγ3
= P2(Aγ1

)

Aγ4
= P1(P3(Aγ1

)).

Finally, in order to obtain the net rigid-body motion under
the entire gait γ, one has to multiply the four transformation
matrices Aγi

, which yields:

Aγ = Aγ1
Aγ2

Aγ3
Aγ4

=

 1 0 0
0 1 4y
0 0 1

 (21)

One can see that the net motion is only along y direction,
while the motions along x and θ are canceled.

C. Gait 3

The third gait type possesses symmetries of a different
figure-eight shape, as shown in Fig. 5(c). The four sub-paths
of this gait satisfy the relations:

γ2 = F2 ◦ F3(γ1)

γ3 = F1 ◦ F2(γ1) (22)
γ4 = F1 ◦ F3(γ1)

Note that the endpoints of γ1 satisfy ϕ1(0)=ϕ2(0)=0 and
ϕ1(T )=ϕ2(T ). Using the symmetry theorems 1-3, the net
rigid-body motions under each sub-path are given by:
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Fig. 6: Simulation results (l0=8.4, l1=l2=14): (a) Square gait 1: ϕ0 = 55◦. The net body motion is only in x direction; (b)
Rectilinear gait 2: ϕ0 = 65◦. The net body motion is only in y direction. c. Rectilinear gait 3: ϕ0 = 50◦. The net body motion
is almost pure rotation.

Aγ1
=

 cos θ − sin θ x
sin θ cos θ y
0 0 1


Aγ2

= P2(P3(Aγ1
))

Aγ3
= P1(P2(Aγ1

))

Aγ4
= P1(P3(Aγ1

))

Finally, in order to obtain the net rigid-body motion under
the entire gait γ, one has to multiply the four transformation
matrices Aγi

, which yields:

Aγ = Aγ1
Aγ2

Aγ3
Aγ4

= (23) cos 4θ − sin 4θ x(1− cos 4θ) + y(2 sin 2θ − sin 4θ)
sin 4θ cos 4θ −x sin 4θ + y(1− 2 cos 2θ + cos 4θ)
0 0 1


One can see that the rotations under each sub-path γi are
summed, but the net translation along x and y directions is
not exactly cancelled. Nevertheless, if the rotation θ is small,
the net translation becomes negligible. This is demonstrated in
the numerical simulations below. Note that gaits that generate
pure rotation with exact cancellation of the translation are not
possible to obtain via symmetry principles only. Nevertheless,
asymmetric gaits that achieve this can be obtained numerically
via trial and error.
Effect of changing the starting point: In the three gaits
given above, it is clear that the choice of a starting point is
of crucial importance. For each gait, the starting point was
chosen to lie on one of the symmetry axes (i.e. ϕ1=ϕ2 and
ϕ1= − ϕ2) or their intersection point, in order to achieve the
desired cancellations and generate net motion along a principal
direction. The effect of changing the starting point of a gait
is explained as follows (cf. [1], [2], [5]). Let Γ denote a
closed shape trajectory with a starting point p, and let Γ’
be a gait with the same trajectory and a different starting
point q. Using Proposition 1 and Theorem 3, the influence of
changing the starting point on the net body motion represented
by homogeneous rigid-body transformation matrices is given
by the relation: AΓ′ = AγAΓA

−1

γ , where γ is the sub-path
from q to p, as illustrated in Fig. 7. Due to the structure of

transformation matrices of SE(2) as in (10), it is clear that
the net rotation is not affected by the choice of a starting
point. On the other hand, the net translation is affected by this
change due to non-commutativity of translations and rotations
in SE(2). For gaits that result in zero net rotation such as
gaits 1 and 2 (and 4,5 in Section VI), the net translation is
simply rotated from one body-fixed frame to another.

D. Simulation Results

We now demonstrate the motion of Purcell’s swimmer under
each of the three gait types. The values of the links’ length
are chosen as l0 = 8.4 cm, l1 = l2 = 14 cm, and their cross-
section radius is a=0.25 cm, which correspond to the physical
lengths of the robotic prototype presented in Section VII. The
chosen gaits are the rectilinear loops shown in dashed lines
in Fig. 5. The angular amplitudes ϕ0 of gaits {1, 2, 3} are
chosen as {55◦, 65◦, 50◦} respectively, again in accordance
with the experiments. The gaits period times T were chosen
as {4, 8, 8} seconds. Fig. 6a,b,c show time plots of the body
position x(t), y(t) normalized by the middle link length l0
and the body orientation θ(t) in radians. For each gait, the
final values (xf , yf , θf) at time t=T appear in the text on the
plots. Multimedia movie files animating the swimmer’s motion

γ

Γ

q

p

ϕ1

ϕ2

Fig. 7: Illustration of changing the starting point of a gait.
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under these three gaits can be found in the supplementary
material. The simulation results indicate that the motion in x
direction under gait 1 is significantly larger than the motion
in y direction under gait 2, and that the net translation under
gait 3 is significantly smaller than the net rotation. These
observations are formally justified in the next section which
studies scaling of the motion under small-amplitude gaits.

V. SCALING OF MOTION UNDER SMALL-AMPLITUDE GAITS

In this section, the scaling of net body motion under
small-amplitude symmetric gaits is formulated. Assume that
a trajectory γ is of small amplitude of joint angles about the
straightened configuration ϕ=0. Let the shape trajectory γ be
described by a small scaling parameter ε ≪ 1 of amplitude,
such that γ=εϕ(t) where ϕ(t) = O(1). For example, one can
think of the stroke amplitude ϕ0 of the rectilinear dashed loops
in Fig. 5 as a representative of ε. Using this representation of
a given gait, one can find the scaling of the resulting net body
motion by using perturbation expansion [35] of the equation
of motion (6). This is summarized in the following theorem.

Theorem 4. Consider Purcell’s three-link swimmer under a
small-amplitude gait γ=εϕ(t), where ε ≪ 1. Let qf =
(xf , yf , θf) be the net body motion under the given gait and
q(0)=0. Then for a symmetric gait of type 1, xf scales as
ε2, and for a symmetric gait of type 2, yf scales as ε3. For a
symmetric gait of type 3, the net rotation θf scales as ε3, the
translation yf scales as ε5, and xf scales as ε8. These results
are summarized in table I.

Gait xf yf θf

1 ε2 0 0

2 0 ε3 0

3 ε8 ε5 ε3

TABLE I: Scaling of net motion under O(ε) gaits

The proof of Theorem 4 appears in the Appendix. It involves
expanding G(ϕ) from (7) as a Taylor series in ϕ1 and ϕ2.
Then, the equation of motion (6) is integrated along the
given trajectory in two stages – leading-order expression for
the rotation θ(t) are obtained first, followed by expressions
for x(t) and y(t), while accounting for cancellations due
to symmetries of the particular gait. While the scaling of
xf = O(ε2) for gait type 1 is already known and has been
obtained in different ways in [24], [36], [37], the results on
gaits 2 and 3 are an original contribution of this work. This
also corroborates the large differences in xf ,yf and θf in the
numerical simulations under the three different rectilinear gaits
as shown in Fig. 6.

VI. GAITS FOR SWIMMERS WITH ONE SYMMETRY AXIS

In this section we analyze three-link swimmer models with
only one axis of symmetry, which are much more realistic
and biologically relevant. Fig. 8(a) shows a swimmer with
axial symmetry and no front-back symmetry. This model is
reminiscent of a typical sperm cell with a spherical head and

thin elongated tail [7], [22]. Fig. 8(c) shows a swimmer with
front-back symmetry and no axial symmetry. This structure of
a big spherical cell at the middle connected to two identical
thin “arms” is reminiscent of the alga Chlamydomonas [7],
[38].

The equations of motion for these swimmer models are
formulated using a straightforward extension of the derivation
in Section II, as follows. The sphere is incorporated into the
formulation in (6) as an additional link with i=3, whose
matrices T3 and E3 in the kinematic relation (1) are easily
constructed. Neglecting hydrodynamic interaction between the
sphere and the slender links, the resistance tensor of the sphere
is known (cf. [12]), and is given by

R3 = 2πµr

 3 0 0
0 3 0
0 0 4r2


where r is the radius of the sphere and µ is the fluid’s viscosity.
Then, the equation of motion (6) holds while G(q,ϕ) is
computed under summation of i=0 . . . 3.

In order to generate net translation in a desired direction for
these swimmers while the net rotation is cancelled, additional
symmetric gaits are proposed and analyzed, which exploit only
the remaining structural symmetries.

A. Swimmer with axial symmetry — Gait 4

A three-link swimmer with axial symmetry and broken
front-back symmetry is depicted in Fig. 8(a). This type of
swimmer possesses the axial symmetry P1 of body motion
from equation (15) while the front-back symmetry P2 from
equation (16) does not hold. The proposed symmetric gait for
this swimmer, denoted as gait 4, is shown in Fig. 8(b). This
gait consists of two concatenated sub-paths γ1 and γ2 that are
related by the axial reflection operator, such that γ2 = F1(γ1).
This gait does not make use of the front-back reflection F2

due to loss of the corresponding symmetry in the swimmer’s
structure. Let (x, y, θ) denote the swimmer’s motion under the
shape trajectory γ1 and q(0) = 0. Using Theorem 1, the matrix
representation of net rigid-body motion under γ1 and γ2 are
related according to:

Aγ1
=

 cos θ − sin θ x
sin θ cos θ y
0 0 1


Aγ2

= P1(Aγ1
) =

 cos θ sin θ x
− sin θ cos θ −y

0 0 1


The net rigid-body motion under the entire gait γ is obtained
by matrix multiplication as

Aγ = Aγ1
Aγ2

=

 1 0 x(1 + cos θ) + y sin θ
0 1 y(1− cos θ) + x sin θ
0 0 1

 . (24)

It can be seen that gait 4 results in pure translation while the
net rotation is cancelled. Moreover, for small rotation θ, the
motion in x direction is much larger than the motion in y
direction. For a small-amplitude gait γ=εϕ(t), scaling of the
net motion is summarized in the following theorem.
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Fig. 8: Swimmers with a single axis of symmetry and their Gaits: (a) Sperm-like swimmer with axial symmetry and no
front-back symmetry. (b) Gait 4 whose two sub-paths satisfy γ2=F1(γ1). (c) A swimmer with right-left symmetry and no axial
symmetry. (d) Gait 5 whose two sub-paths satisfy γ2=F2(γ1).

Theorem 5. Consider the three-link swimmer with axial
symmetry under the symmetric gait 4 with small amplitude
γ=εϕ(t), where ε ≪ 1. Let qf = (xf , yf , θf) be the net
body motion for q(0)=0. Then the net rotation θf is zero, xf

scales as ε2, and yf scales as ε3. Moreover, if the gait also
satisfies ϕ(0)=0 then yf is even smaller and scales as ε5

while xf=O(ε2).

The proof of this theorem appears in the Appendix.

B. Swimmer with front-back symmetry — Gait 5

A three-link swimmer with front-back symmetry and broken
axial symmetry is depicted in Fig. 8(c). This type of swimmer
possesses the front-back symmetry P2 of body motion from
equation (16) while the axial symmetry P1 from equation (15)
does not hold. The proposed symmetric gait for this swimmer,
denoted as gait 5, is shown in Fig. 8(d). This gait consists of
two concatenated sub-paths γ1 and γ2 that are related by the
front-back reflection operator, such that γ2 = F2(γ1). This
gait does not make use of the axial reflection F1 due to loss
of the corresponding symmetry in the swimmer’s structure.
Let (x, y, θ) denote the swimmer’s motion under the shape
trajectory γ1 and q(0) = 0. Using Theorem 2, the matrix
representation of net rigid-body motion under γ1 and γ2 are
related according to:

Aγ1
=

 cos θ − sin θ x
sin θ cos θ y
0 0 1


Aγ2

= P2(Aγ1
) =

 cos θ sin θ −x
− sin θ cos θ y

0 0 1


The net rigid-body motion under the entire gait γ is obtained
by matrix multiplication as

Aγ = Aγ1
Aγ2

=

 1 0 x(1− cos θ)− y sin θ
0 1 y(1 + cos θ)− x sin θ
0 0 1

 (25)

It can be seen that gait 5 results in pure translation while the
net rotation is cancelled. Moreover, for small rotation θ, the
motion in y direction is much larger than the motion in x

direction. For a small-amplitude gait γ=εϕ(t), scaling of the
net motion is summarized in the following theorem.

Theorem 6. Consider the three-link swimmer with front-back
symmetry under the symmetric gait 5 with small amplitude
γ=εϕ(t), where ε ≪ 1. Let qf = (xf , yf , θf) be the net body
motion for q(0)=0. Then the net rotation θf is zero, yf scales
as ε3, and xf scales as ε5.

The proof of this theorem appears in the Appendix.

C. Simulation Results

We now show numerical simulation results of these two
types of swimmers. The first simulation is that of the sperm-
like swimmer shown in Fig. 8(a) with links lengths l0 =
8.4 cm, l1 = l2 = 14 cm and head radius of r=2.1 cm.
The chosen symmetric gait of type 4 is the skewed figure-
eight loop shown in Fig. 9(a), with stroke amplitude ϕ0=60◦.
Time plots of the body position x(t), y(t) normalized by the
middle link length l0 and the body orientation θ(t) in radians
are shown in Fig. 9(b). The final values (xf , yf , θf) at time
t=T appear in the text on the plot. The second simulation is
that of the swimmer model shown in Fig. 8(c) with the same
links lengths, where the middle link is replaced by a sphere
of radius r=5.94 cm. The chosen symmetric gait of type 5 is
the triangular loop shown in Fig. 9(c), with stroke amplitude
ϕ0=80◦. Time plots of x(t), y(t) and θ(t) are shown in Fig.
9(d), while the final values (xf , yf , θf) appear in the text on
the plot. The large differences in both xf and yf in the results
of the simulations under the two gaits are in agreement with
the scaling analysis in Theorems 5 and 6.

Animation movies of the simulated motion under gaits 4 and
5 can be found in the supplementary material. It can be seen
that the motion of the axially-symmetric swimmer under gait 4
is similar to the motion of a sperm cell which moves forward
towards its head, while the motion of the links resembles a
travelling wave along the tail. Moreover, the symmetries of gait
4 imply that the undulation amplitude of the wave can increase
or decrease from head to tail, an effect which has actually
been observed in motion of sperms [39]. On the other hand,
the motion of the right-left (front-back) symmetric swimmer
under gait 5 is substantially different from the typical motion
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Fig. 9: Numerical simulation results of gaits 4 and 5: (a) Skewed figure-eight loop of gait 4 for the sperm-like swimmer.
(b) Simulation results under gait 4 with stroke amplitude ϕ0=60◦. The net body motion is pure translation almost along x
direction. (c) Triangular figure-eight loop gait 5 for the right-left symmetric swimmer. (d) Simulation results under gait 5 with
stroke amplitude ϕ0=80◦. The net body motion is pure translation almost along y direction.

Fig. 10: The experimental macro-scale robotic prototype of
Purcell’s three link swimmer.

observed in Chlamydomonas swimming [38]. One reason for
this difference is the fact that the two flagella of the alga
are deformable and thus they can perform strokes which are
identical up to right-left reflection but break time-reversibility
and thus enable efficient propulsion along y direction only. In
our model where the two “arms” are rigid links, any right-left
symmetric stroke (i.e. ϕ1(t)=ϕ2(t)) is a reciprocal motion that
does not generate net propulsion.

VII. ROBOTIC MACRO-SWIMMER EXPERIMENTS

In this section, motion experiments with a macro-robotic
swimmer prototype are presented. The swimmer prototype,
shown in Fig. 10, consists of three thin aluminum plates that
represent the links. The thickness of the plates is 2a = 0.5 cm
and their width in the vertical direction is b=6 cm. The
length of the middle plate is l0 = 8.4 cm and of the side
plates is l1 = l2 = 14 cm, except for the motion experiment
of gait 4, for which one side plate has been replaced to
l1 = 10.5 cm in order to break the front-back symmetry.
Two servo motors (SANWA, SPEC-GP) are actuating the
joint angles. The aluminum plates are immersed in a viscous

fluid, while the motors are placed on a flotation cell made
of foam. The role of the flotation cell is to maintain planar
motion of the swimmer in horizontal plane, as well as holding
the motors outside of the fluid. The fluid is highly viscous
silicone oil with kinematic viscosity of ν = 60000 cSt and
specific gravity of 0.976. Characteristic angular velocity of the
joints is ω=0.24rad/sec. The characteristic velocity is taken
as the mean velocity of the side link due to joint rotation,
i.e. v=0.5l2ω=0.0168m/s. Thus, the characteristic Reynolds
number for the experiments is estimated as Re=vl/ν ≈ 0.039.
This verifies that the motion is under the regime of low
Reynolds number hydrodynamics, so that inertial effects are
indeed negligible even for this macro-robotic system due to
the high viscosity and slow motions. The experiments were
conducted in a rounded container with diameter of 1m. The
swimmer was placed close to the center of the container in
order to minimize the effect of the walls, since the theoretical
model assumed unbounded fluid domain. An infrared Opti-
track Flex V:100 camera was used for measurements of the
swimmer’s planar motion. The camera tracks two reflectors
attached to the motors in sampling rate of 100Hz, and raw
measurements are filtered using a 5-point moving average and
processed using MATLAB for calculation of the body motion
x(t), y(t) and θ(t). The gaits of the joint angles ϕ1(t), ϕ2(t)
were generated by MATLAB, and angle commands were sent
to a DSP controller by using MATLAB’s Simulink toolbox.
The motors were connected to the DSP controller via cable
which was hung on top of the robot in order to minimize its
influence on disturbance forces applied to the swimmer.

A. Experimental Results

Motion experiments under four different gaits were con-
ducted. The first gait is the square-shaped gait 1 shown in
Fig. 1(b), with stroke amplitude ϕ0=55◦ and period time
T=16 sec. The second gait is the rectilinear figure-eight
gait 2, shown in the dashed line in Fig. 5(b), with stroke
amplitude ϕ0=65◦ and period time T=32 sec. The third gait
is the rectilinear figure-eight gait 3, shown in the dashed line
in Fig. 5(c), with stroke amplitude ϕ0=50◦ and period time
T=32 sec. Finally, the fourth gait for the swimmer with
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Fig. 11: Experimental results of gait 1 with ϕ0 = 55◦. (a) Time plots of body motion x(t), y(t), θ(t). (b) Net motion (xf , yf , θf)
vs. period index k, mean values appear in labels. (c) Motion snapshots of the swimmer in x− y plane, once every period.
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Fig. 12: Experimental results of gait 2 with ϕ0 = 65◦. (a) Time plots of body motion x(t), y(t), θ(t). (b) Net motion (xf , yf , θf)
vs. period index k, mean values appear in labels. (c) Motion snapshots of the swimmer in x− y plane, once every period.
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Fig. 13: Experimental results of gait 3 with ϕ0 = 50◦. (a) Time plots of body motion x(t), y(t), θ(t). (b) Net motion (xf , yf , θf)
vs. period index k, mean values appear in labels. (c) Motion snapshots of the swimmer in x− y plane, once every period.
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Fig. 14: Experimental results of gait 4 with ϕ0 = 50◦. (a) Time plots of body motion x(t), y(t), θ(t). (b) Net motion (xf , yf , θf)
vs. period index k, mean values appear in labels. (c) Motion snapshots of the swimmer in x− y plane, once every period.
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Gait 1 Gait 2 Gait 3 Gait 4
xf/l0 - experiment 0.1263 0.0075 0.0034 0.0827

(mean ± st. deviation) ±0.0061 ±0.0037 ±0.0019 ±0.0113
xf/l0 - simulation 0.2686 0 8.721 · 10−5 0.0606
yf/l0 - experiment 0.0084 0.0325 0.0192 0.00055

(mean ± st. deviation) ±0.0016 ±0.0030 ±0.0043 ±0.0061
yf/l0 - simulation 0 0.04866 0.002503 1.793 · 10−4

θf [rad] - experiment 0.00063 0.0018 0.0306 0.0012
(mean ± st. deviation) ±0.0041 ±0.0027 ±0.0038 ±0.0026
θf [rad] - simulation 0 0 0.06966 0

TABLE II: Comparison of experimental measurement of net body motion to numerical simulations for gaits 1-4. The values
in bold denote the dominant components for each gait.

l1 ̸= l2 is the skewed figure-eight gait 4 shown in Fig. 9(a),
with stroke amplitude ϕ0=50◦ and period time T=32 sec.
Video movie files of motion experiments under gaits 1,2 and
3 (speeded up by ×{8, 6, 32}, respectively) appear in the
supplementary material.

The results of the four motion experiments are shown
in Figures 11-14. The position and orientation x(t), y(t)
and θ(t) obtained from filtering and processing the markers’
position measurements are plotted in Figures 11-14(a). The
net body motion for each period was calculated according to
the formula Aγ [k] = A(qk−1)

−1A(qk), where qk=q(t=kT )
and k=0, 1, 2 . . . is the discrete period index. That is, Aγ [k]
represents the body motion due to application of the gait at
the kth period, expressed with respect to a reference frame
which is attached to the swimmer’s body at its position right
after the previous step (this is equivalent to resetting the initial
conditions to zero after each step). The net body motion
xf , yf , θf as a function of the step index k are shown in Figures
11-14(b), as obtained from the filtered position measurements.
Mean value and standard deviation across multiple periods
were also computed, and appear in the text of the plots
(mean only) and in Table II. Finally, motion snapshots of the
swimmer’s configuration in x − y plane at the end of each
period as extracted from the filtered position measurements
are shown in Figures 11-14(c). The results of the net body
motion for each gait are summarized in Table II, and compared
to theoretical results of numerical simulation for the three-
link swimmer with slender links whose lengths l0, l1, l2 are
identical to the plate lengths, under the same gaits as in the
experiments. The bold values in Table II denote the dominant
components of net motion for each gait.

The experimental results summarized in Table II are in
excellent qualitative agreement and reasonable quantitative
agreement with the theoretical results of numerical simula-
tions. It can be seen that the dominant directions of net body
motion under gaits {1, 2, 3, 4} are {x, y, θ, x}, respectively,
and that motion in the other directions is significantly smaller
(1 − 2 orders of magnitude), as predicted by the theory.
The values of dominant components of net motion in the
experiments under gaits 1−4 differ from corresponding values
in the numerical simulations, yet they are in the same order
of magnitude. Perhaps the main reasons for these difference
are the fact that the links of the robotic swimmer are thin
plates rather than slender rods as in the theoretical model, as
well as the effect of added drag of the floatation cell which

was not accounted by the simulation. The standard deviations
of measured values of net motion in the dominant directions
is in percentage of {4.8% , 9.2% , 12.4%, 13.7%}. This
indicates that there were imperfections in the repeatability
of net body motion between periods. Another significant
discrepancy between the simulation and experiment is the net
motion under gait 3 of nearly pure rotation, in which the net
translation in the experiment is in the same order of magnitude
as net rotation, in contrast to a much smaller ratio in the
numerical simulations. This observation is even more evident
in the motion snapshots in Figure 13(c), where it can be clearly
seen that the swimmer rotates about a point which is in notable
offset from the middle link’s center. Nevertheless, the fact that
the swimmer’s center of rotation is very close to being a fixed
body point indicates a fair level of repeatability. There are
many possible explanations to all the discrepancies and the
repeatability imperfections. The most probable reasons involve
physical effects that were not considered in the theoretical
model, listed as follows. First, despite the efforts made to
keep slackness of the cable connecting the swimmer’s motors
to the DSP controller, its tension applies external forces on
the swimmer which had a non-negligible cumulative effect.
Second, the large strokes of the side plates caused significant
shifts in the horizontal position of swimmer’s center of mass,
which, in, turn, induced lateral tilting oscillations of the
floatation foam, violating the assumption of purely planar
motion. Third, the distance of the swimmer from the walls of
container was changing during motion and caused violations
of the assumed symmetries, while hydrodynamic interaction
of the walls and the swimmer was completely neglected in
the model. Finally, other unmodelled effects are hydrodynamic
interaction between the links for large stroke amplitudes, drag
force on the floatation cell, and the influence of inertial forces.

In order to test the dependence of net body motion on
stroke amplitude, another set of motion experiments has been
conducted under the square gait 1, where the stroke amplitude
ϕ0 has been varied from 20◦ to 50◦ with 5◦-increments. For
each value of ϕ0, the net forward motion xf has been measured
and averaged over 10-20 periods. The measurements were
compared to theoretical predictions of numerical simulation
for a swimmer model with slender links having the same
lengths. The results are plotted in Fig. 15, where the solid
line indicates numerical simulations, the dashed line indicates
experimental measurements, and the error bars denote the
standard deviation for each experiment. It can be seen that
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despite the difference in the link’s shape, the experimental
and theoretical results are in the same order of magnitude.
One unexplained finding is that the curve of the experimental
measurement is not monotonically increasing around ϕ0=40◦,
in contrast to the theoretical prediction. It is known from
numerical simulations for larger values of ϕ0 that Purcell’s
swimmer has an optimal stroke amplitudes at which the
displacement xf is maximized and that for larger amplitudes
xf even reverses its direction [20], [37]. These effects were
not corroborated by our experiments, since they require larger
stroke amplitudes which were not implementable due to me-
chanical limitations of the servo motors’ assembly. Moreover,
the experimental measurements shown in Fig. 15 also do not
capture the scaling of xf as O(ε2) for small stroke amplitudes.
The reason is that limitations of the optical tracking system
implied that for gaits with small values of ϕ0 below 20◦,
inaccuracies and noises in the position measurements became
too large compared to the net displacement, rendering such
measurements unreliable.

VIII. CONCLUSION

In this work we have analyzed symmetries and gaits of
shape changes for Purcell’s three-link microswimmer model.
Symmetric gaits have been proposed, that generate net trans-
lation in the body’s prinicpal directions as well as almost
pure net rotation. Gaits that generate pure translation were
also proposed for more realistic microswimmer models with
a single axis of symmetry. Scaling of the net body motion
under small-amplitude gaits has been analyzed by using
perturbation expansion. The results were demonstrated by
numerical simulations and by controlled motion experiments
of a macro-scale robotic swimmer in a highly viscous fluid.
Importantly, the theoretical results are not restricted by the
choice to use the approximation of resistive force theory, and
all the symmetry arguments apply also under more accurate
solutions of Stokes equations, as long as the swimmer retains
its geometric symmetries. Moreover, the results are also not
limited to microswimmers, and apply to any robotic three-
link locomotion system such as large swimmers in a perfect
fluid [26]–[28] and the kinematic snake [31]. Extension of the
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Fig. 15: Net forward motion xf as a function of stroke
amplitude ϕ0 under the square gait. Solid line - numerical
simulations. Dashed line - mean value of experimental results,
error bars denote one standard deviation.

theory to multi-link swimmers, such as the discretization of
a deformable filament [34], [37] remains a challenging open
problem.

We now discuss some limitations of our work and list some
possible extensions. First, we note that the gaits derived here
using symmetry considerations are by no means optimal. A
possible way to compute optimal gaits, which is a direct
extension of [23], is to formulate the time-periodic functions
ϕi(t) as truncated Fourier series that respect the particular
symmetries of the gait, and then numerically optimize the
discrete set of series coefficients in order maximize a chosen
cost function such as net displacement or energetic efficiency.
Another way is to treat the problem using optimal control
approach, i.e. Pontryagin’s principle, cf. [24], [34]. Notably,
the swimmer’s structure, e.g. ratio of links’ lengths, also has
a substantial effect on performance and thus it could also be
optimized, as already shown in [23], [24].

As most of the works on microswimmers models and
robotic locomotion systems, our work is heavily based on two
crucial assumptions. The first assumption is that the kinematic
shape of the swimmer can be directly controlled, and the
second is the invariance of the dynamics with respect to rigid
body motion, i.e. gauge symmetry. The latter is is implied
by assuming an unbounded fluid domain without any external
boundary conditions. When one considers more realistic mod-
els of mechanical actuation, relaxing the first assumption, other
interesting issues must be taken into account. For example,
in the three-link swimmer under controlled actuation torques
at the joint, one has to carefully choose the time profiles of
the control torques in order to induce periodic solutions of the
shape kinematics which are orbitally stable under perturbations
without using feedback [40].

When the gauge symmetry assumption is relaxed by consid-
ering, for instance, a swimmer near an infinite no-slip wall, the
nice structure of principal connections for the body velocities
no longer exists. Thus, one has to consider symmetries with
respect to the wall in order to generate gaits of shape changes
that induce asymptotic convergence to motion of net transla-
tion at a fixed distance from the wall [41]. In other types of
boundaries such as a circular domain [42], gaps in a wall [43],
and free surface [44], the microswimmer’s dynamics becomes
even more interesting.

Other related works in which these two key assumptions are
violated are as follows. The work [45] studies Purcell’s swim-
mer with one actuated joint angle and one passive joint with
a torsion spring which models an elastic tail. The work [46]
studies the motion of a two-link swimmer with a bottom-heavy
link, which is influenced by an aligning torque due to gravity.
The work [47] studies a two-link swimmer with one mag-
netic link that is actuated by applying an oscillating external
magnetic field. This two-link magnetic swimmer has recently
been realized and manufactured in micron-scale [9], inspired
by previous work of [8]. In these types of microswimmers the
dynamics is no longer time-invariant, and thus actuation of a
single periodic input is sufficient for generating net motion.
Moreover, relation between the actuation frequency and the
swimmer’s characteristic time scales has a substantial effect
on the net motion.
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To summarize, the research on microswimmers dynamics
and control can be extended in many directions, including
theoretical modeling as well as micro-scale experiments. The
analysis of structural symmetries of the dynamics and their
potential use for gait generation, control and stabilization is
expected to play a central role in future works in all these
directions.

APPENDIX - PROOFS OF TECHNICAL DETAILS

Proof of Proposition 1

Let qf = (xf , yf , θf)
T denote the net body motion un-

der initial conditions q(0) = (x0, y0, θ0)
T , and let q̃f =

(x̃f , ỹf , θ̃f)
T denote the net body motion under zero initial

conditions q(0)=0. The motion q(t) is obtained by integrating
the equation of motion (6), which satisfies the decomposition
(7). Due to the special structure of D(θ) in (7), the equation
for θ̇(t) is independent of q and can be directly integrated in
order to obtain:

θ(t) = θ0 +

∫ t

0

G3(ϕ(t′))ϕ̇(t′)dt′ , θ0 + θ̃(t)

where G3(ϕ) is the third row of G(ϕ) and θ̃(t) is the
solution under zero initial condition. The net body position
at t=T can then be obtained as

[
xf

yf

]
=

[
x0

y0

]
+∫ T

0

[
cos(θ0+θ̃(t)) − sin(θ0+θ̃(t))

sin(θ0+θ̃(t)) cos(θ0+θ̃(t))

] [
G1(ϕ(t))
G2(ϕ(t))

]
ϕ̇(t)dt

=

[
x0

y0

]
+

[
cos θ0 − sin θ0

sin θ0 cos θ0

]
·

·
∫ T

0

[
cos θ̃(t) − sin θ̃(t)

sin θ̃(t) cos θ̃(t)

] [
G1(ϕ(t))
G2(ϕ(t))

]
ϕ̇(t)dt

=

[
x0

y0

]
+

[
cos θ0 − sin θ0

sin θ0 cos θ0

] [
x̃f

ỹf

]

where Gi(ϕ) is the ith row of G(ϕ) for i=1, 2. This relation
can be written in the form of a homogeneous rigid-body
transformation matrix as:

A(ψ(γ,q0)) = (xf , yf , θf)
T = cos(θ0 + θ) − sin(θ0 + θ) x0 + x̃f cos θ0 − ỹf sin θ0

sin(θ0 + θ) cos(θ0 + θ) y0 + x̃f sin θ0 + ỹf cos θ0

0 0 1

 ,

which is precisely equivalent to the relation (11) .

Proof of Theorem 1

Let qf=(xf , yf , θf)
T denote the net body motion under the

shape trajectory γ = ϕ(t), which is obtained by integrating
(6) as

qf = ψ(γ, 0) =

∫ T

0

D(θ(t))G(ϕ(t))ϕ̇(t)dt .

Let q̃f = (x̃f , ỹf , θ̃f)
T denote the net body motion under the

reflected shape trajectory F1(γ)=−ϕ(t). Using the velocity
symmetry f1 from (8) then gives

ψ(F1(γ), 0) =
∫ T

0
D(θ̃(t))G(−ϕ(t))(−ϕ̇(t))dt

= −
∫ T

0
D(θ̃(t))G(−ϕ(t))ϕ̇(t)dt

= −
∫ T

0
D(θ̃(t))

 −1 0 0
0 1 0
0 0 1

G(ϕ(t))ϕ̇(t)dt

=
∫ T

0

 cos(θ̃(t)) sin(θ̃(t)) 0

sin(θ̃(t)) − cos(θ̃(t)) 0
0 0 −1

G(ϕ(t))ϕ̇(t)dt

where θ̃(t) is the body orientation angle during motion under
the shape trajectory F1(γ). Using the velocity symmetry f1

from (8), θ̃(t) is related to θ(t), which is the body angle under
shape trajectory γ, according to:

θ̃(t) = −
∫ t

0

G3(ϕ(t′))ϕ̇(t′)dt′ = −θ(t).

The net translation x̃f and ỹf can then be obtained as[
x̃f

x̃f

]
=

=

∫ T

0

[
cos θ̃(t) sin θ̃(t)

sin θ̃(t) − cos θ̃(t)

] [
G1(ϕ(t))
G2(ϕ(t))

]
ϕ̇(t)dt

=

∫ T

0

[
cos θ(t) − sin θ(t)
− sin θ(t) − cos θ(t)

] [
G1(ϕ(t))
G2(ϕ(t))

]
ϕ̇(t)dt

=

[
xf

−yf

]
These relations can be written in terms of homogeneous ma-

trix transformation as: AF1(γ) =

 cos θf sin θ xf

− sin θf cos θf −yf

0 0 1

.

Proof of Theorem 2

Let qf=(xf , yf , θf)
T denote the net body motion under

the shape trajectory γ = ϕ(t), and let θ(t) denote the
body angle during motion. Similarly, let q̃f = (x̃f , ỹf , θ̃f)

T

denote the net body motion under the reflected shape trajectory
F2(γ)=Sϕ(t), and let θ̃(t) denote the body angle during
motion. Using the velocity symmetry f2 from (9) then gives

q̃f = ψ(F2(γ), 0) =

∫ T

0

D(θ̃(t))G(Sϕ(t))Sϕ̇(t)dt

=

∫ T

0

D(θ̃(t))

 −1 0 0
0 1 0
0 0 −1

G(ϕ(t))S2ϕ̇(t)dt

=

∫ T

0

 − cos θ̃(t) − sin θ̃(t) 0

− sin θ̃(t) cos θ̃(t) 0
0 0 −1

G(ϕ(t))ϕ̇(t)dt.

The relation between θ̃(t) and θ(t) is given by

θ̃(t) =

∫ t

0

G3(Sϕ(t′))Sϕ̇(t′)dt′ = −θ(t).
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The net translation x̃f and ỹf can then be obtained as[
xf

yf

]
=

=

∫ T

0

[
− cos θ̃(t) − sin θ̃(t)

− sin θ̃(t) cos θ̃(t)

] [
G1(ϕ(t))
G2(ϕ(t))

]
ϕ̇(t)dt

=

∫ T

0

[
− cos θ(t) sin θ(t)
sin θ(t) cos θ(t)

] [
G1(ϕ(t))
G2(ϕ(t))

]
ϕ̇(t)dt

=

[
−xf

yf

]
These relations can be written in terms of homogeneous ma-

trix transformation as: AF2(γ) =

 cos θf sin θf −xf

− sin θf cos θf yf

0 0 1

.

Proof of Theorem 3

Due to the structure of the equation of motion (6), it is
clear that if q(t) is a solution of (6) under shape change
γ = ϕ(t), then q(T − t) is a solution of (6) under the
reversed shape change γ′ = F3(γ) = ϕ(T − t). Denoting
q0 = q(0) and qT = q(T ), one obtains that qT = ψ(γ,q0)
and q0 = ψ(γ

′,qT ). Using the gauge symmetry relation (11)
from Proposition 1 then yields

A(q0) = A(ψ(γ′,qT )) = A(qT )A(ψ(γ′, 0))

= A(ψ(γ,q0))A(ψ(γ′, 0)).

Setting q0 = 0 then gives

A(0) = I = A(ψ(γ, 0))A(ψ(γ′, 0)) = AγAγ′ ,

where I is the identity matrix. This implies that Aγ′=A−1

γ .

Proof of Theorems 4-6

Consider a shape trajectory γ1=εϕ(t), which is one part of
a closed loop. The solution for the body angle θ(t) is given
by

θ(t) =

∫ t

0

G3(εϕ(t′))εϕ̇(t′)dt′. (26)

In order to solve (26) using perturbation expansion [35], θ(t)
is expressed as a power series in the small amplitude ε as
θ(t) = εθ1(t) + ε2θ2(t) + ε3θ3(t) + · · · . The matrix G(ϕ)
can then be expanded about ϕ=0 as a power series in its
arguments ϕ1 and ϕ2. Finally, the expansion of (26) can be
arranged into different leading orders of ε which are integrated
as:

θ1(t) = G3(0)(ϕ(t)−ϕ(0))

θ2(t) =

∫ t

0

[
dGT

3

dϕ
(0)ϕ(t′)

]T

ϕ̇(t′)dt′

θ3(t) =
1

2

∫ t

0

ϕ(t′)T [∇2G31ϕ(t′) ∇2G32ϕ(t′)]ϕ̇(t′)dt′,

(27)

where Gij is the i, j-element of G(ϕ) and the operator
∇2 represents the Hessian matrix containing second-order
derivatives with respect to ϕ1 and ϕ2, evaluated at ϕ=0.

The net translation under γ1 can then be obtained by
integrating (6) and using (7) as:[

x
y

]
=

∫ T

0

[
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

] [
G1(εϕ(t))
G2(εϕ(t))

]
εϕ̇(t)dt.

(28)
x and y are expressed as a power series in ε as

x = εx1 + ε2x2 + ε3x3 + . . .

y = εy1 + ε2y2 + ε3y3 + . . .

The trigonometric terms of the rotation matrix in (28) can be
expanded as power series in θ(t) and then in ε as

cos θ(t) = 1− 1

2
θ2 +O(θ4) = 1− 1

2
ε2θ2

1(t) +O(ε3)

sin θ(t) = θ +O(θ3) = εθ1(t) + ε2θ2(t) +O(ε3).

Expanding the rows of G(ϕ) in (28) as Taylor series in ϕ1

and ϕ2 and substituting (27), leading order expressions for x
and y are obtained as

x1 = G1(0)(ϕ(T )−ϕ(0))

x2 =

∫ T

0

[
dGT

1

dϕ
(0)ϕ(t)

]T

ϕ̇(t)− θ1(t)G2(0)ϕ̇(t)dt

y1 = G2(0)(ϕ(T )−ϕ(0))

y2 =

∫ T

0

[
dGT

2

dϕ
(0)ϕ(t)

]T

ϕ̇(t)

+ (ϕ(t)−ϕ(0))TGT

3 (0)G1(0)ϕ̇(t)dt

y3 =

∫ T

0

(
θ1(t)

[
dGT

1

dϕ
(0)ϕ(t)

]T

+ θ2(t)G1(0)

+ϕT (t)[∇2G21ϕ(t) ∇2G22ϕ(t)]− 1

2
θ2

1(t)G2(0)

)
ϕ̇dt

(29)

We now analyze the ε-order of net body motion x, y, θ for
the sub-paths γ1 in each of the gaits 1-5, according to equations
(27) and (29). Under gaits 1-4, the swimmer satisfies the axial
symmetry f1 in (8), which implies that G1(ϕ)=−G1(−ϕ),
and thus one obtains that G1(0)=0. Therefore, (29) implies
that x1=0. Under gait 5, axial symmetry f1 no longer holds.
Nevertheless, the sub-path γ1 under this gait satisfies ϕ(0) =
ϕ(T ), and (29) again implies that x1=0. Thus, one concludes
that x = O(ε2) under all gaits 1-5.

Under gaits 1-4, the axial symmetry f1 in (8) implies

that G3(ϕ)=G3(−ϕ), and thus one obtains that
dGT

3

dϕ
(0)=0.

Thus, (27) implies that θ2(T )=0. Nevertheless, θ1(T ) in (27)
does not necessarily vanish for all gaits. For gaits 1,2 and 4
one obtains that θ1(T ) ̸= 0 in general. In gait 3, conditions on
the endpoints of γ1 are ϕ1(0)=ϕ2(0)=0 and ϕ1(T )=ϕ2(T ),
and front-back symmetry (9) implies that G31(0)=−G32(0).
Invoking (27), one obtains that θ1(T )=0. In gait 5, the
sub-path γ1 satisfies ϕ(0) = ϕ(T ), and (27) implies that
θ1(T )=0. Same holds for gait 4 in the special case where
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ϕ(0) = ϕ(T )=0. Thus, one concludes that θ(T ) is of order
O(ε) for gaits 1,2 and 4, O(ε2) for gait 5, and O(ε3) for gait
3 and the special type of gait 4 where ϕ(0) = ϕ(T )=0.

For gaits 1,3 and 4 one obtains that y1 ̸= 0 in general. In
gait 2, conditions on the endpoints of γ1 are ϕ1(0)=ϕ2(0)=0
and ϕ1(T )= − ϕ2(T ), and front-back symmetry (9) implies
that G21(0)=G22(0). Invoking (27), one obtains that y1=0.
In gait 5, the sub-path γ1 satisfies ϕ(0) = ϕ(T ), and (29)
implies that y1=0. Same holds for gait 4 in the special case
where ϕ(0) = ϕ(T )=0. As for y2, recall that under gaits 1-4
the axial symmetry f1 in (8) implies that G2(ϕ)=G2(−ϕ),

and thus one obtains that
dGT

2

dϕ
(0)=0. Since G1(0)=0 under

this symmetry, (29) implies that y2=0. For gait 5, we now
prove that y2=0 as well. It can be verified that the front-

back symmetry (9) implies that the two matrices
dGT

2

dϕ
(0) and

GT

3 (0)G1(0) are symmetric. Therefore, the expression for y2

in (29) can be integrated as

y2 =
1

2

(
ϕ(t)T

[
dGT

2

dϕ
(0)

]
ϕ(t)

+ (ϕ(t)−ϕ(0))T [GT

3 (0)G1(0)](ϕ(t)−ϕ(0))T
)∣∣∣∣T

0

.

(30)

Since the endpoints of γ1 under gait 5 satisfy ϕ(0) = ϕ(T ),
(30) imples that y2 = 0. Thus, one concludes that y=O(ε) for
gaits 1,3 and 4 and y=O(ε3) for gait 2,5 and the special type
of gait 4 where ϕ(0) = ϕ(T )=0.

Finally, we consider motion under the entire loop γ for
gaits 1-5 and determine the ε-orders of the net body motion
(xf , yf , θf). In gait 1, according to equation (19), one obtains
that yf=θf=0 while xf=4x scales as ε2. In gait 2, according
to equation (21) one obtains that xf=θf=0 while yf=4y scales
as ε3. In gait 3, according to (23), the net rotation under the
gait γ is θf=4θ=O(ε3), and the net translation is[

xf

yf

]
=

[
x(1− cos 4θ) + y(2 sin 2θ − sin 4θ)
−x sin 4θ + y(1− 2 cos 2θ + cos 4θ)

]
=

[
x ·O(θ2) + y ·O(θ3)
−x ·O(θ) + y ·O(θ2)

]
=

[
O(ε8)
O(ε5)

]
.

This is precisely the scaling that appears in Table I. In gait 4,
according to (24) the net rotation θf under the entire gait is
zero, while the net translation satisfies[

xf

yf

]
=

[
x(1 + cos θ) + y sin θ
y(1− cos θ) + x sin θ

]
=

[
x ·O(1) + y ·O(θ)
y ·O(θ2) + x ·O(θ)

]
=

[
O(ε2)
O(ε3)

]
.

(31)

Moreover, if the sub-path γ1 satisfies ϕ(0)=ϕ(T )=0, then
the net motion under γ1 scales as x=O(ε2), y=O(ε3) and
θ=O(ε3). In this case, (31) implies that xf=O(ε2) and
yf=O(ε5). In gait 5, recall that the net motion under γ1 scales
as x=O(ε2), y=O(ε3) and θ=O(ε2). According to (25), the
net rotation θf under the entire gait is zero, while the net
translation satisfies

[
xf

yf

]
=

[
x(1− cos θ)− y sin θ
y(1 + cos θ)− x sin θ

]
=

[
x ·O(θ2)− y ·O(θ)
y ·O(1)− x ·O(θ)

]
=

[
O(ε5)
O(ε3)

]
.
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