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Abstract

Hybrid dynamical systems are systems consisting of both continuous-time and discrete-time dynamics. A fundamental

phenomenon that is unique to hybrid systems is Zeno behavior, where the solution involves an infinite number of

discrete transitions occurring in finite time, as best illustrated in the classical example of a bouncing ball. In this note,

we study the hybrid system of the set-valued bouncing ball, for which the continuous-time dynamics is set-valued.

Such systems are typically used for deriving bounds on the solution of nonlinear single-valued hybrid systems in a

small neighborhood of a Zeno equilibrium point in order to establish its local stability. We utilize methods of Lyapunov

analysis and optimal control to derive a necessary and sufficient condition for Zeno stability of the set-valued bouncing

ball system and to obtain a tight bound on the Zeno time as a function of initial conditions.

I. INTRODUCTION

Hybrid dynamical systems are systems that consist of both continuous-time and discrete-time dynamics [11],

[15], [20], [28]. They are used to model a wide range of dynamical systems such as biological and chemical

processes, coordination of multiple air vehicles, computer-integrated control systems, and robotic systems that

involve intermittent contacts. A fundamental phenomenon that is unique to hybrid systems is Zeno behavior, where

the solution involves an infinite number of discrete transitions occurring in finite time. The classical example of

Zeno behavior is the bouncing ball system, describing the one-dimensional motion of a rigid ball bouncing on a

flat ground, where the collisions of the ball with the ground are modeled as rigid-body impacts with a Newtonian

coefficient of restitution. In that case, one can easily show that as long as the impacts are not perfectly elastic, the

system displays Zeno behavior for any given initial condition, converging to a limit point where the ball lies at rest

on the ground. Moreover, derivation of a closed-form expression for the finite accumulation time (Zeno time) as a

function of initial conditions is straightforward.

Zeno behavior has recently gained increasing interest, in works studying conditions for existence of Zeno behavior

[1], [8], [16], [26], [30], [31] and its relation to asymptotic stability [2], [13], [21], [24]. In particular, some works

have focused on Lagrangian hybrid systems, which model unilaterally constrained mechanical systems undergoing
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impacts [6]. In this class of models, the configuration q of the mechanical system is restricted to satisfy a unilateral

constraint function h(q) ≥ 0, representing rigid-body contact. Zeno solutions in such systems typically converge

to limit points (q, q̇) satisfying h(q) = 0, Dh(q)q̇ = 0, called Zeno equilibria. A key fact is that generally, the

nonlinearity of the system precludes the derivation of explicit expression for the Zeno limit point and Zeno time

of a solution under a given initial condition. Moreover, even determining whether the solution under a given initial

condition is Zeno is not obvious. It was recently shown in [18] that a necessary and sufficient condition for existence

of Zeno solutions in the vicinity of a Zeno equilibrium point x∗ = (q∗, q̇∗) is that ḧ(x∗) < 0, where ḧ(x∗) is the

second-order time derivative of the constraint function along trajectories of the system’s continuous-time dynamics,

evaluated at x∗. Moreover, the same condition also implies local stability of x∗ [21]. The physical interpretation of

the condition ḧ(x∗) < 0 is that the hybrid dynamics of h(q(t)) is locally similar to that of a bouncing ball. A key

limitation of this stability criterion is that it only guarantees existence of a small neighborhood of initial conditions

near x∗ that lead to Zeno solutions. Two fundamental questions that naturally arise are: Can one obtain an explicit

expression for a neighborhood of initial conditions all leading to Zeno solutions? Can one derive bounds on the

Zeno times and Zeno limit points of solutions starting at a given neighborhood? Answering these questions may

prove useful for several applications. For example, many practical simulations of Lagrangian hybrid systems carry

executions beyond Zeno points by truncating the solution after a finite number of discrete transitions and projecting

it onto the constraint surface [3], [23]. In that case, the explicit bounds described above can be utilized to derive

bounds on the numerical error incurred by the truncation. Another example is in the control of bipedal robots by

inducing a periodic orbit on the robot’s hybrid system model [17], [29], where the impacts are traditionally assumed

to be perfectly plastic. Using the more realistic model of non-plastic impacts essentially leads to Zeno solutions,

and the explicit bounds described above can then be utilized for deriving conditions for existence of a periodic

orbit with Zeno behavior in such systems, without requiring explicit computation of the Zeno limit point [22].

A key simplifying step towards addressing the two questions delineated above is to focus only on the dynamics

of the constraint function h(q) along trajectories of the system. In a given neighborhood U of a Zeno equilibrium

point, the nonlinear single-valued dynamics of h(q(t)) can be replaced by the set-valued dynamics given by the

second-order differential inclusion ḧ ∈ [−amax,−amin], where amax and amin are obtained by computing bounds

on the exact dynamics of h within the neighborhood U . When h vanishes, a discrete jump occurs according to

the impact law ḣ→−eḣ, where e is the Newtonian coefficient of restitution. These two components constitute the

hybrid system we study in this work — the set-valued bouncing ball (SVBB). Interestingly, while in the classical

single-valued bouncing ball, e < 1 implies that all solutions are Zeno, this is not true in the set-valued case.

The contributions of this work are as follows. First, we derive a condition under which the set-valued bouncing

ball is Zeno and asymptotically stable. We study the system using two different approaches — Lyapunov analysis

and optimal control theory — and prove the Zeno stability criterion with both methods. Second, we derive an

exact upper bound on the Zeno time of all possible solutions under a given initial condition. While Lyapunov

analysis only provides a conservative bound, we show that by using optimal control techniques one obtains the

exact tight bound. Results on optimal control for hybrid systems have appeared in the literature, including [27]
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and [9]. However, the generality of that work is not needed here because of the specific structure of the problem.

In particular, our work is inspired by [21], [22], which derived conservative bounds on Zeno time and Zeno limit

point in Lagrangian hybrid systems via optimal control techniques, and by the work in [13], [24] which studied

stability characterizations in set-valued hybrid systems, and derived Lyapunov conditions for Zeno stability. Finally,

we wish to point out that stability characterization of differential inclusions via optimal control analysis was also

studied in [19] in the context of switched systems.

II. PRELIMINARIES

In this section we give our basic terminology of set-valued hybrid systems, define the notion of uniform Zeno

stability, and formulate the problem of the set-valued bouncing ball.

A. Hybrid systems

Let F,G : Rn ⇒ Rn be set-valued mappings and C,D ⊂ Rn be sets. We consider hybrid systems of the form

H :

 ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D
(1)

For more background on hybrid systems in this framework, see [5], [10], and [12].

A subset E ⊂ R≥0 × N is a compact hybrid time domain if E =
∪J−1

j=0 ([tj , tj+1], j) for some finite sequence

of times 0 = t0 ≤ t1 ≤ t2 ... ≤ tJ . It is a hybrid time domain if for all (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ...J}) is a

compact hybrid time domain. Equivalently, E is a hybrid time domain if E is a union of a finite or infinite sequence

of intervals [tj , tj+1]×{j}, with the “last” interval possibly of the form [tj , T ) with T finite or T = +∞. A hybrid

arc is a function ϕ whose domain dom ϕ is a hybrid time domain and such that for each j ∈ N, t → ϕ(t, j) is

locally absolutely continuous on Ij := {t | (t, j) ∈ dom ϕ}. A hybrid arc ϕ is complete if its domain, dom ϕ, is

unbounded. A hybrid arc ϕ is a solution to the hybrid system H if ϕ(0, 0) ∈ C ∪D and

(S1) for all j ∈ N such that Ij has nonempty interior and for almost all t ∈ Ij ,

ϕ(t, j) ∈ C, ϕ̇(t, j) ∈ F (ϕ(t, j));

(S2) for all (t, j) ∈ dom ϕ such that (t, j + 1) ∈ dom ϕ,

ϕ(t, j) ∈ D, ϕ(t, j + 1) ∈ G(ϕ(t, j)).

A solution ϕ is maximal if there does not exist a solution ψ with dom ϕ ⊂ dom ψ, dom ϕ ̸= dom ψ, ϕ(t, j) = ψ(t, j)

for all (t, j) ∈ dom ϕ. Complete solutions are maximal.

B. Zeno solutions and uniform Zeno stability

A hybrid arc ϕ is called Zeno if it is complete but

T (ϕ) := sup{t ∈ R≥0 | ∃j s.t. (t, j) ∈ dom ϕ}
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is finite. In short, ϕ is Zeno if it experiences infinitely many jumps in finite (ordinary) time. In such terminology,

the “tail” of the hybrid arc, or even the whole arc itself, may consist of infinitely many instantaneous jumps. For

a given initial condition x0 ∈ C ∪ D, let Zmax(x0) denote the supermum of T (ϕ) over all possible solutions ϕ

satisfying ϕ(0, 0) = x0. Finally, denoting | · |A as the distance from a set A ⊂ Rn in the Euclidean norm, we define

the uniform Zeno stability of A as follows.

Definition 1 (Uniform Zeno stability [13]): A compact set A ⊂ Rn is called uniformly Zeno asymptotically

stable (UZAS) for the hybrid system H if the following hold:

(a) each solution ϕ to (1) is bounded and Zeno, and also satisfies |ϕ(t, j)|A → 0 as t+ j → ∞, (t, j) ∈ dom ϕ.

(b) for each εa, εb > 0 there exists δ > 0 such that, for each maximal solution ϕ to (1) with |ϕ(0, 0)|A ≤ δ one

has |ϕ(t, j)|A ≤ εa for all (t, j) ∈ dom ϕ and T (ϕ) < εb.

C. The set-valued bouncing ball

The set-valued bouncing ball (SVBB) is a hybrid system with state x ∈ R2 and data

C =
{
x ∈ R2 : x1 ≥ 0

}
,

F (x) =


 x2

−a

 , a ∈ [amin, amax]

 ,

D =
{
x ∈ R2 : x1 = 0, x2 ≤ 0

}
,

G(x) =

 0

−ex2

 ,

(2)

where e ∈ (0, 1) and 0 < amin ≤ amax.

In the case where amin = amax = g, the system (2) simply describes the single-valued hybrid dynamics of

the classical bouncing ball, where x1 is the height of the ball above the ground, x2 is the ball’s vertical velocity,

and g is the acceleration of gravity. The jump rule x2 → −ex2 in (2) represents a rigid-body impact with the

ground which induces an instantaneous jump in the velocity, where e is called Newton’s coefficient of restitution,

and 1− e2 is the fraction of kinetic energy dissipated through the collision. In that case, it is well known that the

origin O = (0, 0) is uniformly Zeno asymptotically stable, and obtaining a closed-form expression for the Zeno

time for given initial condition is straightforward. However, in the general case where amin ̸= amax, these issues

are more complicated. Thus, the main focus of this work is on the following two problems:

1) Given the hybrid system of the SVBB in (2), find conditions on amin, amax and e guaranteeing that the

origin O is UZAS.

2) Under these conditions, find an explicit formulation for the maximal Zeno time Z(x0) for any given initial

condition x0 ∈ C ∪D.
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III. LYAPUNOV CHARACTERIZATION OF ZENO STABILITY

In this section we address the two problems presented above from the viewpoint of Lyapunov analysis for hybrid

systems as described in [13], [24].

A. Lyapunov characterization of the SVBB

We now review a result from [13], [24] on a Lyapunov characterization of uniform Zeno stability in hybrid

systems, focusing on our example of the SVBB system. The analysis in [24] is fairly general and discusses

Lyapunov characterization of several types of stability of a compact set A for a general hybrid system of the

form (1). In our particular setup given in (2), we focus on uniform Zeno stability of the origin O = (0, 0) in

R2. Therefore, we present here a basic and simplified version of a result from [13], which is summarized in the

following proposition.

Proposition 1 ([13]): Consider the hybrid system of the set-valued bouncing ball given in (2). Then the origin

O is UZAS if there exist a constant c > 0 and a Lyapunov function V : C ∪ D → R≥0 that is continuously

differentiable and radially unbounded and positive definite with respect to O, such that

(i) For all x ∈ C \ {O} and f ∈ F (x), ⟨∇V (x), f⟩ ≤ −c

(ii) For all x ∈ D \ {O}, V (G(x)) ≤ V (x).

The idea of the proof is based on the fact that for a given initial condition ϕ(0, 0) = x0, (i) implies that the

time-derivative of V (x) along continuous parts of the solutions of the hybrid system satisfies V̇ ≤ −c, while (ii)

implies that V (x) is not increasing on discrete jumps. Therefore, V (x) satisfies V (ϕ(t, j)) ≤ V (x0) − ct for all

(t, j) ∈ dom ϕ. Since V (x) is positive definite and vanishes only at x = O, any solution will reach O in an ordinary

time which is bounded by V (x0)/c. Note that Lyapunov conditions like those in Proposition 1 do not guarantee

local existence of solutions and thus, in general, it is not possible to conclude that maximal solutions are complete.

Conditions guaranteeing local existence of solutions are given in [13]. These conditions are automatically satisfied

in the particular case of the SVBB.

B. A condition for Uniform Zeno stability of the SVBB

We now use Proposition 1 to derive a necessary and sufficient condition for uniform Zeno stability of the set-

valued bouncing ball. It was already shown in [13] that in the classical single-valued bouncing ball example, i.e.

with amin = amax = g, O possesses uniform Zeno stability. This was proven by choosing a Lyapunov function of

the form V (x) = x2 + k
√
x22/2 + gx1. Intuitively, this Lyapunov function is a rescaled combination of the ball’s

total mechanical energy with an additional term proportional to the velocity x2, guaranteeing the uniform decrease

of V (x) along flows. Note that in this case, uniform Zeno stability of O was guaranteed for any coefficient of

restitution e < 1. However, in the set-valued case this is no longer true, and the condition for UZAS depends on

e, as well as on the bounds amin and amax, as summarized by the following theorem.
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Theorem 1: The origin of the set-valued bouncing ball whose dynamics is described by (2) possesses uniform

Zeno stability if and only if the following condition holds:

e2α < 1, where α =
amax

amin
. (3)

Proof: The proof is based on choosing a Lyapunov function according to Proposition 1. First, we prove the

“if” part, as follows. Consider the candidate Lyapunov function V : dom V → R defined by

V (x) = κx2 +
√
W (x), where W (x) =

1

2p(x2)
x22 + x1, (4)

where

p(x2) =

 amax if x2 ≤ 0

amin if x2 > 0

κ =

(
1√

2amax
− e√

2amin

)
1

(1 + e)
,

and dom V =
{
x ∈ IR2 : x1 ≥ 0

}
. Note that under condition (3), we have κ > 0, and that although p(x2) is

piecewise-defined, V (x) is still is continuous on its domain and continuously differentiable on dom V \ {O}.

Moreover, V (x) is positive definite on C ∪D since V (x) is positive when x2 = 0 and x1 > 0, or when x1 = 0

and x2 > 0, and when x1 = 0 and x2 < 0 we have

V (x) ≥
√
W (x)− κ|x2| ≥

1√
2amax

|x2| − κ|x2| =
e

1 + e

(
1√

2amin
+

1√
2amax

)
|x2| > 0 . (5)

Now, observe that, for all x ∈ D,

V (G(x))− V (x) = κ(1 + e)|x2|+
e√

2amin
|x2| −

1√
2amax

|x2| = 0 . (6)

Moreover, for all x ∈ C \ {0} and all f(a) ∈ F (x), we have

⟨∇V (x), f(a)⟩ = −κa+ 0.5
x2√
W (x)

(
1− a

p(x2)

)
a ∈ [amin, amax]. (7)

Since the second term in the derivatives in (7) is never positive, it follows that, for all x ∈ C \ {0} and all

f(a) ∈ F (x), we have ⟨∇V (x), f(a)⟩ ≤ −κamin . Therefore, V (x) satisfies the conditions of Proposition 1, and

O is UZAS.

In order to prove the “and only if” part, consider the candidate Lyapunov function W (x) given in (4), which is

positive definite on C ∪D. Assume that condition (3) is violated. Therefore, for all x ∈ D, we have

W (G(x))−W (x) =

(
e2

2amin
− 1

2amax

)
x22 ≥ 0.

In the continuous part, for all x ∈ C \ {0} and f(a) ∈ F (x), we have

⟨∇W (x), f(a)⟩ = x2

(
1− a

p2(x2)

)
, a ∈ [amin, amax].

Choosing a solution ϕ for which a = p(x2), gives ⟨∇W (x), f⟩ = 0. Therefore, one can construct a solution with

arbitrarily small initial condition, for which W (x) is non-decreasing. Thus, this solution cannot converge to the

origin. Note that in case where (3) is strictly violated, i.e. it is not satisfied as equality, W is strictly increasing on

jumps, leading to divergence of the solution ϕ away from O.
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C. Bound on the Zeno time

We now utilize the Lyapunov analysis to derive an upper bound on the Zeno time for any given initial condition.

The bound is based on the particular choice of Lyapunov function V (x) given in (4), and is summarized in the

following corollary.

Corollary 1: Consider all possible solutions ϕ(t, j) of the SVBB system having initial conditions ϕ(0, 0) = x0.

Then the maximal Zeno time Z(x0) is bounded by

Z(x0) ≤
V (x0)

κamin
, (8)

where V (x) and κ are defined in (4).

Proof: First, Eq. (6) in the proof of Theorem 1 implies that the Lyapunov function V (x) does not change along

the discrete jumps in any solution ϕ of (2). Moreover, (7) implies that the time-derivative of V along the continuous

parts of solutions is bounded by V̇ ≤ −κa ≤ −κamin < 0. Therefore, under initial condition ϕ(0, 0) = x0, the

value of V along the solution is bounded from above by V (ϕ(t, j)) ≤ V (x0) − κamint. Since V (x) is positive

definite and vanishes only at O, the ordinary time at which V converges to O asymptotically must satisfy the

bound in (8).

Note that (8) only provides a conservative upper bound on Z(x0), while its exact expression is derived in the

next section.

IV. OPTIMAL CONTROL ANALYSIS OF ZENO STABILITY

In this section, we utilize techniques of optimal control theory to analyze the system of the set-valued bouncing

ball. First, we reproduce the proof of the condition for uniform Zeno stability in Theorem 1. Then we derive an

exact expression for the maximum Zeno time Z(x0). We begin by reviewing some basic terminology and concepts

of optimal control theory, and, in particular, of Pontryagin’s maximum principle.

A. Review of Pontryagin’s maximum principle

We now give a brief summary of Pontryagin’s maximum principle. The presentation here is based on standard

textbooks on optimal control theory such as [4] and [7], though we adopt here a slightly different notation. Consider

a control system

ẋ = f(x, u), (9)

where x = (x1, . . . xn) ∈ IRn, u ∈ Ω ⊆ IRm, and Ω is a convex set of admissible controls. A solution to (9) on

a time interval [τ0, τf ] is a pair (x(t), u(t)) satisfying (9) and u(t) ∈ Ω for all t ∈ [τ0, τf ]. The initial and final

conditions of x(t) are denoted x0 = x(τ0) and xf = x(τf ). For a given control system (9), the optimal control

problem is defined as finding a solution to (9) under given initial conditions x0, which maximizes a given cost
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function depending on the end condition P (xf , τf )
1. The solution, denoted (x∗(t), u∗(t)), is called the optimal

solution associated with the given cost function. Note that the end condition xf , as well as the end time τf , may

be either specified or left as free parameters of optimization.

The optimal control problem can be formulated as a problem in calculus of variations, and its solution is based

on the classical notion of Pontryagin’s maximum principle, which is stated as follows. First, define the co-state

vector λ(t) ∈ IRn. Next, define the system’s Hamiltonian, given by H(x, u, λ, t) = λ(t)T f(x, u). The co-state

dynamic equation is then given by

λ̇ = −∂H
∂x

. (10)

The optimal control input u∗(t) is given by

u∗(t) = argmaxuH(x(t), u(t), λ(t), t) (11)

for t ∈ [τ0, τf ]. The optimal solution is obtained by solving the coupled equations (9), (10), and (11) under boundary

conditions x(τ0) = x0 and x(τf ) = xf . In case where the end condition for xi,f = xi(τf ) is not specified for some

i ∈ {1 . . . n}, an alternative end condition for λi is given by

λi(τf ) =
∂P

∂xi,f
. (12)

Finally, in case where the end time τf is also not specified, an additional condition on H(τf ) is given by

H(x(τf ), u(τf ), λ(τf ), τf ) = − ∂P

∂τf
. (13)

B. Formulating the SVBB as an optimal control problem

We now formulate the continuous part of the dynamics of the SVBB as an optimal control problem, as follows.

The control system  ẋ1 = x2

ẋ2 = u
where u ∈ [−amax,−amin], (14)

represents the set-valued differential equation ẋ ∈ F (x), where F (x) is given in (2). We view the initial and final

times τ0 and τf as the endpoints of a time interval [tj , tj+1] in a solution ϕ(t, j) of the SVBB system. The initial

condition of (14) is thus given by x(τ0) = (0, v) for some v ∈ IR≥0. One end condition is specified, namely

x1(τf ) = 0. However, the end time τf , as well as x2(τf ), which corresponds to the ball’s terminal velocity, are

both unspecified. The Hamiltonian of this system is given by

H(x, λ, u, t) = λ1x2 + λ2u. (15)

Using (10), the co-state dynamic equations are then given by

λ̇1 = 0, λ̇2 = −λ1, (16)

1Many textbooks also consider an integral cost function of the form J =
∫ τf
τ0

g(x, u, t)dt. This cost function can be easily incorporated

into the formulation here by augmenting the state vector x with an additional variable z whose dynamics is given by ż = g(x, u, t). The cost

function is then simply given by P = z(τf ).
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indicating that λ1(t) is constant and λ2(t) is a linear function. Pontryagin’s maximum principle (11) then implies that

the optimal control input u∗(t) can only be one of the endpoints −amin or −amax (a case known as “bang-bang”

control, which is typical for linear systems under optimal control). Moreover, the choice of u∗(t) is determined

only by the sign of λ2(t), where u∗(t) = −amax if λ2(t) < 0, and u∗(t) = −amin if λ2(t) > 0. Since λ2(t) is a

linear function, it has at most one zero-crossing point in the time interval [τ0, τf ]. Therefore, the optimal control

u∗(t) is piecewise-constant, with at most one switching time. The proofs of all results in the rest of this section

will build on this setup for deriving optimal solutions under different choices of a cost function.

C. Proof of Zeno stability condition via optimal control analysis

We now reproduce the proof of Theorem 1 which gives the condition for UZAS of the SVBB, by using optimal

control analysis.

Proof [of Theorem 1]: The key idea of the proof is to consider the sequence of velocities x2 at the discrete

times tj in all possible solutions ϕ(t, j), find the “most unstable” possible sequence, and require that it decays

asymptotically to zero as j → ∞. For a given solution ϕ(t, j) = (x1(t, j), x2(t, j)) of the SVBB system under

initial condition ϕ(0, 0) = x0, denote vj = x2(tj , j) for j ∈ {1, 2 . . .}. Physically, vj is the post-impact velocity of

the ball right after the jth collision with the ground. By construction, one has vj ≥ 0. First, we show that for any

possible solution ϕ(t, j), the sequence of vj satisfies

e√
α
vj < vj+1 < e

√
αvj , (17)

where α is defined in (3). In order to prove (17), we consider the optimal control system (14), which describes

the evolution of ϕ(t, j) in a specific time interval [tj , tj+1]. The initial condition is given by x(τ0) = (0, v), and

the end condition is x1(τf ) = 0, where the end velocity x2(τf ) = x2f is unspecified. We seek for the solution

(x∗(t), u∗(t)) that maximizes the absolute value of x2f . Since x2f < 0, the cost function to be maximized is

chosen as P (xf , τf ) = −x2f . Since x2f is unspecified, the end condition on λ2 in (12) gives λ2(τf ) = −1, and

the maximum principle (11) then implies that u∗(τf ) = −amax. Since we concluded that u∗(t) switches between

amax and amin at no more than a single point, one can write u∗(t) = −amin for t ∈ [τ0, τs) and u∗(t) = −amin

for t ∈ [τs, τf ], where τs is an unknown switching time. By substitution of u = u∗(t) and direct integration of

(14) under the given initial and end conditions, one can solve for the end time τf by substituting x1(τf ) = 0. The

solution for the terminal velocity x2f is then obtained as

x2f = −
√
(v − aminτs)2 + 2amax(vτs − aminτ2s /2). (18)

Using elementary calculus, it is then straightforward to show that x2f attains a minimal value of x∗2(τf ) =

−
√

amax

amin
v, under the critical switching time τ∗s = v/amax. One can also verify that x∗2(τ

∗
s ) = 0. The physical

meaning of this optimal solution is selecting the “slowest” acceleration ẋ2 = −amin when the ball is on its way up,

i.e. x2 > 0, and the “fastest” acceleration ẋ2(t) = −amax for the way down, i.e. x2 > 0. Under these selections, one

attains maximal hitting velocity at the ground collision. Interestingly, the optimal input is precisely u∗ = −p2(x2),
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where p2(x2), defined in (4), was used in the derivation of the Lyapunov function in the previous section. Finally,

setting v = vj , applying the jump rule vj+1 = −ex2(tj+1, j) = −ex2(τf ) and using the definition for α in (3)

completes the proof of the upper bound in (17). The proof of the lower bound in (17) is obtained in a similar way,

by maximizing x2f . As a result, for any solution ϕ(t, j), the sequence vj is bounded between the two geometric

series given by

v1

(
e√
α

)j−1

≤ vj ≤ v1
(
e
√
α
)j−1

. (19)

In order to get asymptotic convergence of ϕ(t, j) to O, the sequence vj must decay to zero. This is satisfied when

the factor of the upper-bounding geometric series in (19) is less than one, which is precisely condition (3) in

Theorem 1. Note that this condition is necessary and sufficient, as we have proved that the upper bound in (17) is

tight, since the particular solution ϕ(t, j) with a = p(x2) satisfies the upper bound in (19) as an equality.

Next, we show that all solutions ϕ(t, j) have a finite bound on ordinary time T (ϕ) < ∞. Consider again the

optimal control problem (14), under initial condition x(τ0) = (0, v). The cost function to be maximized is chosen

as P (xf , τf ) = τf . The end condition on λ2 in (12) gives λ2(τf ) = 0. The end condition (13) gives H(τf ) = −1.

Using the expression for H in (15) and the fact that x2f < 0, we conclude that λ1(τf ) > 0. Using the solution

for λi(t) in (16), we conclude that λ2(t) > 0 for all t ∈ ([τ0, τf ). The maximum principle (11) then implies that

the optimal input is constantly u∗ = −amin, without any switches. It can then be shown that the maximal time is

given by τ∗f = 2v/amin. Applying this result to a time interval [tj , tj+1] in a solution ϕ(t, j) of the SVBB, the

time difference ∆j = tj+1 − tj is bounded by ∆j ≤ 2vj/amax. Using the upper bound for vj in (19), one obtains

an upper bound on the Zeno time under initial condition x0 = (h0, v0) as

T (ϕ) = t1 +
∑∞

j=1 ∆j ≤ t1 +
∑∞

j=1 2
vj
amin

≤ t∗1 + 2
v∗1

amin(1− e
√
α)
,

where t∗1 =
v0 +

√
v20 + 2aminx10
amin

, and v∗1 =


e
√
α(v20 + 2aminh0) v0 ≥ 0

e
√
v20 + 2amaxh0 v0 < 0

(20)

Therefore, under the condition (3), all possible solutions are Zeno and converge to O in finite time, which, by

varying the initial condition, can be made arbitrarily small.

Note that the bound on the Zeno time in (20) is not tight, just as the one given in (8). The reason for that is

the fact that the maximum time in (20) is obtained by selecting the constant input u∗ = −amin, while the “most

unstable” velocity sequence vj is obtained by taking u∗ = −p(x2). Therefore, a solution ϕ(t, j) such that T (ϕ)

actually attains the bound in (20) does not necessarily exist.

D. Tight bound on Zeno time of the SVBB

We now present the second main contribution of this work, which is an exact tight bound on the Zeno time of

solutions of the SVBB system under any given initial condition. As a first step, we focus on initial conditions of

the form ϕ(0, 0) = (0, ν) for ν > 0, corresponding to the ball starting initially on the ground with nonzero upward

velocity. The bound on Zeno times under initial conditions of this form is summarized in the following lemma.
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Lemma 1: Consider all possible solutions ϕ(t, j) of the SVBB system under initial condition ϕ(0, 0) = x0 =

(0, ν), where ν > 0. Assuming that condition (3) is satisfied, all solutions are Zeno, and their maximal Zeno time

Z(x0) is given by

Z(x0) = 2
1 + e

1− e2α
· ν

amin
. (21)

Moreover, there exists a particular solution ϕ∗(t, j) such that T (ϕ∗) = Z(x0).

Proof: Recall that under condition (3), Theorem 1 implies that all possible solutions ϕ(t, j) are Zeno. We

therefore seek for an optimal solution ϕ that maximizes T (ϕ) for given ν. Let ϕ∗ν(t, j) denote this solution.

We now make two key observations, as follows. First, we note that the SVBB system satisfies the property of

homogeneity [14]. In particular, the linearity and time-invariance (LTI) of both discrete-time and continuous-time

components of (2) (the continuous-time part is represented in (14) as a control system which is also LTI), as well as

the homogeneity of the sets C and D, imply that for any c > 0, ϕ(t, j) is a solution of (2) if and only if cϕ(t/c, j)

is a solution of (2). (This is a special case of Lemma 3.4 in [14], see also [25].) Therefore, for any c > 0 one

obtains that ϕ∗cν(t, j) = cϕ∗ν(t/c, j).

A second observation is that any “tail” of an optimal solution is also an optimal solution. Therefore, denoting

ϕ∗ν(tk, k) = (0, vk) for some k ∈ IN , one obtains ϕ∗vk
(t, j) = ϕ∗ν(t + tk, j + k). These two observations together

imply the existence of a scalar η ∈ (0, 1) such that for any (t, j) ∈ dom ϕ∗ν , one has

ϕ∗ν(t, j) = ηjϕ∗ν(η
−j(t− tj), 0). (22)

That is, the behavior of the optimal solution in the jth interval of ordinary time is identical to its behavior in the first

time interval up to scaling of the magnitude and time. Therefore, the problem of finding the optimal solution ϕ∗ν(t, j)

reduces to solving an optimal control problem on the first time interval [0, t1] only. The scalar η is then given by

η = v1/ν = −ex∗2(t1)/ν, and the remainder of the optimal solution is simply obtained by using (22). In particular,

since the discrete times tj in the optimal solution ϕ∗ν(t, j) satisfy the geometric series relation tj+1 − tj = ηjt1,

the Zeno time is given by the sum

T (ϕ∗) =
t1

1− η
. (23)

Consider again the control system (14), which represents the solution ϕ∗ν(t, j) in the time interval [0, t1]. We

now solve an optimal control problem, where the cost function to be maximized is the Zeno time (23), which is

formulated here as P (xf , τf ) =
τf

1+ex2f/ν
. The solution of the co-state dynamics λi(t) is given in (16). Using (12),

the end condition for λ2 is given by λ2(τf ) = − eτfν
(ν+ex2f )2

< 0. Therefore, the maximum principle (11) implies

that u∗(τf ) = −amax. Thus, the optimal input satisfies u∗(t) = −amin for t ∈ [τ0, τs) and u∗(t) = −amin for

t ∈ [τs, τf ], where τs is an unknown switching time. By substitution of u = u∗(t) and direct integration of (14)

under the given initial and end conditions, one can solve for the end time τf and obtain the solution for the terminal

velocity x2f as

x2f = −
√
(ν − aminτs)2 + 2amax(ντs − aminτ2s /2)

τf = τs +
ν − aminτs +

√
(ν − aminτs)2 + 2amax(ντs − aminτ2s /2)

amax
.

(24)
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Using (24), the cost function P can now be expressed in terms of the variable switching time τs. Using elementary

calculus, it is then straightforward to show that P (τs) attains a maximal value for τ∗s = 2 ν
amin

· 1+e
1+2e+e2α .

Substitution of τs = τ∗s into the expression for P then gives the maximal Zeno time in (21).

We now use Lemma 1 to establish the main result of this section, which is an exact tight bound on the Zeno

time of the SVBB system under any initial condition. The result is summarized in the following theorem.

Theorem 2: Consider all possible solutions ϕ(t, j) of the SVBB system under initial condition ϕ(0, 0) = x0 =

(h0, v0). Assuming that condition (3) is satisfied, all solutions are Zeno, and their maximal Zeno time Z(x0) is

given by

Z(x0) =


v0 + σU0min

amin
v0 ≥ vc

v0 + U0max(1 + βα)

amax
v0 < vc

(25)

where

U0max =
√
v20 + 2amaxh0 , U0min =

√
v20 + 2aminh0 , vc = −

√
2aminh0
σ2 − 1

α =
amax

amin
, β = 2e

1 + e

1− e2α
, σ =

√
1 + 2β + αβ2. (26)

Moreover, there exists a particular solution ϕ∗(t, j) such that T (ϕ∗) = Z(x0).

Proof: We are seeking for the solution ϕ∗(t, j) that maximizes the Zeno time T (ϕ) under initial condition

x0 = (h0, v0). Consider the “tail” of the solution ϕ∗(t, j) for t ≥ t1, which has initial condition (0, v1). Using

Lemma 1, the maximal Zeno time of this solution, denoted T ∗
1 , is obtained by substituting ν = v1 in (21). Therefore,

one only needs to consider the first time interval [0, t1] of ϕ∗(t, j) as an optimal control problem of the system

(14) where τf = t1, and optimize the cost function t1 + T ∗
1 . The velocity v1 is related to the end condition of the

control system (14) via the relation v1 = −ex2f . Therefore, using the definition of β in (26), we choose the cost

function to be maximized as

P (xf , τf ) = τf − β
x2f
amin

, (27)

which is precisely t1 + T ∗
1 . The Hamiltonian of the system is defined in (15), and the dynamics of the co-state

variables λ1, λ2 is given in (16). The end condition for λ2(t) in (12) gives λ2(tf ) = − β
amin

< 0. The maximum

principle (11) then implies that u∗(τf ) = −amax. Thus, the optimal input is taken as u∗(t) = −amin for t ∈ [τ0, τs)

and u∗(t) = −amin for t ∈ [τs, τf ], where τs is an unknown switching time. Note that the case τs = 0 corresponds

to taking constant input u∗ = −amax without switching. Substituting u = u∗(t) into (14), direct integration gives

τf = τs +
vs +

√
v2s + 2amaxhs
amax

, x2(τf ) = vs − (τf − τs)amax,

where vs = v0 − aminτs and hs = h0 + v0τs − 1
2aminτ

2
s .

Substituting these expressions, the cost function P (xf , tf ) is now a function of τs only. Using elementary calculus,

it is then straightforward to show that P (τs) attains a maximum at the critical switching time given by

τ∗s =
σv0 + U0min

σamin
,
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Fig. 1. Plot of the exact bound on Zeno time Z(x0) (solid) as a function of , compared to the estimates ZLyap in (8) (dashed) and ZOC in

(20). Parameter values are e = 0.7, amin = 0.9, amax = 1.1 and h0 = 1.

where U0min and σ are defined in (26). Note that in order to get a nonnegative switching time τ∗s ≥ 0, v0 must satisfy

σv0 + U0min ≥ 0. In case where σv0 + U0min < 0, one gets τ∗s < 0, a the optimal solution is obtained by taking

τs = 0, so that u∗(t) = −amax at all times, without switching. Finally, direct substitution of the optimal solution

into the cost function (27) gives the piecewise-defined expression in (25), where the condition σv0 +U0min ≥ 0 is

reformulated as v0 ≥ vc.

Example: We now demonstrate the result by computing the exact bound on the Zeno time and compare it with

its estimates in (8) and (20). The parameters of the system’s data in (2) are chosen as e = 0.7, amin = 0.9, and

amax = 1.1. We compute the exact bound Z(x0) according to (25) for initial conditions x0 = (h0, v0), where we

fix h0 = 1 and vary v0. Fig. 1 shows Z(x0) as a function of v0, appearing as a solid curve. The value of vc in

(26) for this data is vc = −0.181. The dashed curve in the plot is the estimate ZLyap derived in (8) via Lyapunov

analysis, and the dotted curve is the estimate ZOC , derived in (20) using optimal control considerations. It can

be seen that the estimates ZLyap and ZOC are both conservative, with deviations of approximately 10% and 5%,

respectively, from the exact bound Z(x0).

V. CONCLUSION

In this work we studied the hybrid dynamics of the set-valued bouncing ball. We used Lyapunov analysis and

optimal control techniques to obtain a necessary and sufficient condition for Zeno stability, and derived an exact

bound on the maximal Zeno time as for a given initial conditions. The result is useful for obtaining bounds on

Zeno solutions of nonlinear single-valued hybrid systems in the vicinity of Zeno equilibria. Two future directions

for extension of the results are as follows. First, consideration of set-valued dynamics that are more complicated

than the linear dynamics of the SVBB may enable a closer approximation of true nonlinear hybrid systems, in

order to obtain tighter bounds on their Zeno solutions. Second, utilization of the results for planning cyclic tasks
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that involve Zeno behavior in robotic systems, in the spirit of [22], as well as stabilization and control of such

tasks, are challenging open problems.
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