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1 Preliminaries and Problem Statement

This section defines the terminology and notation used throughout the paper, and then
formulates the problem analyzed in this paper. Let a 3D object B be supported by n
frictional point contacts, whose position vectors are given by x1 . . .xn ∈ IR3. We use the
standard basis to IR3 such that e = (0 0 1)T is the upward vertical direction. Let xc

denote the position of B’s center-of-mass, and let f g denote the gravitational force acting

at xc. Let f 1 . . .fn ∈ IR3 be the contact reaction forces. We assume hard-finger contacts
which generate negligible torque about the contact normals. Finally, we denote the matrix

E =

(
1 0 0
0 1 0

)
which projects a vector in IR3 onto the horizontal plane. The horizontal

projections of contact points, contact forces, and center-of-mass position are deonted by
x̃i = Exi, f̃ i = Ef i and x̃c = Exc, respectively.

The static equilibrium condition for a given n-contact arrangement is given by

n∑
i=1

(
f i

xi × f i

)
= −

(
f g

xc × f g

)
. (1)

For a given arrangement of n ≥ 3 contacts and center-of-mass position xc, the static bal-
ance condition (1) is indeterminate, and the solution for f 1 . . .fn is generically a (3n−6)-
dimensional affine space in IR3n. Under Coulomb’s friction model the contact forces must
additionally lie in their respective friction cones. The ith friction cone is denoted Ci and is
given by

Ci = {f i : ||f i − (f i · ni)ni|| ≤ µi(f i · ni)} , (2)

where µi is Coulomb’s coefficient of static friction at the ith contact and ni is the outward
unit normal at xi. The physical meaning of (2) is that the magnitude of the tangential
component of the contact force f i must be less than or equal to µi times the magnitude of
the normal contact force f i · ni. Throughout the paper, we will often embed the friction
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cones in the physical space by shifting the origin of each cone Ci to the contact point xi as
in Fig. 1(a). These physical friction cones depict the feasible lines of action of the contact
forces f i. Assuming that the contacts points and their respective friction cones are given,
the feasible equilibrium region of center-of-mass locations is defined as follows.

Definition 1. For a given arrangement of contacts {x1 . . .xn}, contact normals {n1 . . .nn},
and coefficients of static friction {µ1 . . . µn}, the feasible equilibrium region, denoted R,
is the region of all possible center-of-mass locations xc for which there exist contact reaction
forces f i ∈ Ci (i = 1 . . . n) satisfying the static equilibrium condition (1).

The goal of this paper is to extend the results of our previous work which characterized the
feasible equilibrium region R for n = 3 contacts to the general case of n > 3 contacts.

2 Basic properties of the equilibrium region

In this section, we review some basic properties of the feasible equilibrium region R, which
were proven in our previous paper [IJRR 2010]. Then we generalize the notion of tame
contact arrangement to the case of n > 3 and discuss its relation to the support polygon
principle. The first observations on basic properties of R are summarized in the following
proposition.

Proposition 2.1. Let a 3D object B be supported by n frictional contacts against gravity in
three-dimensions. If the feasible equilibrium region R is nonempty, it is a vertical line for
a single contact, a vertical strip for two contacts, and generically a three-dimensional right
cylinder with convex cross-section for n ≥ 3 contacts.

It is worth noting that for a single contact R is a vertical line passing through the contact,
and for two contacts it is a vertical strip in the plane passing through the contacts. For
n ≥ 3 contacts, a special case occurs when all contacts are aligned along a common spatial
line. In this non-generic case R degenerates to a two-dimensional vertical strip embedded in
the vertical plane passing through the contacts. Based on the proposition, the computation
of R requires computation of its horizontal cross-section, denoted R̃, in IR2. From this point
and on, we will refer to the cross-section R̃ ⊂ IR2 as the equilibrium region.

Tame contact arrangements and the support polygon: When computing equilibrium
postures on a flat horizontal terrain, a classical concept is the support polygon principle,
which states that the center-of-mass must lie above the polygon spanned by the contacts.
Formally, the support polygon Π ⊂ IR2 is defined as the polygonal region spanned by the
horizontal projection of all contact points, namely, Π = conv{x̃1 . . . x̃n}. It can be readily
shown that on a flat horizontal terrain with n frictional contacts (i.e. ni = e and e · xi =

h = const for i = 1 . . . n), the equilibrium region R̃ is precisely equal to Π. However, if the

terrain is not flat, the relation between R̃ and the support polygon Π can be more involved.
In the previous paper, we have introduced a subclass of 3-contact arrangements called tame,
for which R̃ is fully contained in Π. In the following, we extend the notion of tame contact
arrangements to n contacts. First, denote by ∂Π the boundary of the support polygon,
which is a collection of line segments connecting pairs of projected contacts (x̃i, x̃j) which
form a closed loop. Note that not all the contact points necessarily contribute to ∂Π. The
generalized definition of tame contact arrangement is then given as follows.
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Definition 2. A contact arrangement of n frictional contacts is called tame if each line
segment (x̃i, x̃j) ∈ ∂Π satisfies

sgn((xi − xj) · (xk − xi)× fk) = sgn((xi − xj) · (xk − xi)× e)

for all fk ∈ Ck and all k ∈ {1 . . . n} \ {i, j}.

Geometrically, the definition means that each friction cone Ck emanating from the
contact point xk for k ̸= i, j lies entirely above the line segment (x̃i, x̃j). Note that for n = 3
contacts, this definition of tame reduces to the one given in our previous paper.

Next, we recall the definition of a quasi-flat contact. A contact xi whose corresponding
friction cone is given by Ci is called quasi-flat if e ∈ Ci, where e is the upward vertical
direction. It is clear that a quasi-flat contact xi satisfies x̃i ∈ R̃, since a contact force f i = e
balances the net forces and torques when xc lies above xi, while all other contact forces are
zero. The following proposition summarizes the relations between R̃ and Π.

Proposition 2.2. For a tame n-contact arrangement, the equilibrium region R̃ is fully
contained in the support polygon, R̃ ⊆ Π. The converse relationship, Π ⊆ R̃, always holds
when all contacts are quasi-flat.

The proposition implies that for tame contact arrangements such that all contacts are
quasi-flat one obtains R̃ = Π. This equality holds for a flat horizontal terrain with or
without friction, and also persists under small variations in the contact arrangements, which
verifies the validity of the support polygon principle on terrains which are nearly flat. In this
paper, we restrict ourselves to tame contact arrangements, for which R̃ is fully contained in
the support polygon Π. Nevertheless, if some contacts that lie on ∂Π are not quasi-flat, as
commonly occurs in scenarios of uneven terrain, one obtains that R̃ ⊂ Π, and the support
polygon principle is no longer a safe criterion for finding equilibrium postures. In such cases,
one has to explicitly compute the feasible equilibrium region, whose boundary can be much
more complicated than a simple polygon. This computation is the main contribution of our
paper.

Graphical examples: We now illustrate the application of Proposition 2.2 to two contact
arrangements, and emphasize the dependence on friction coefficients. Figure 1(a) shows an
arrangement of four contacts with uniform friction coefficient µ on a step. All contacts lie
on horizontal surfaces, i.e. ni = e for i = 1, 2, 3, 4 so that all contacts are quasi-flat, which
implies that R̃ ⊆ Π. The vertical height of the step is l and the horizontal distance between
the contacts on the lower step and the contacts on the lower step is h. Using definition
2, it can be verified that the contact arrangement is tame if and only if the coefficient of
friction satisfies µ < l/h. According to Proposition 2.2, when this condition is satisfied the

equilibrium region satisfies R̃ = Π. When the friction is large or the vertical height of the
step is increased, this condition is violated, so that the equilibrium region satisfies R̃ ⊃ Π.

Figure 1(b) shows an arrangement of five contacts. Each contact normal makes an
angle of 30◦ with the vertical direction e, and the coefficient of friction µ is equal at all
contacts. The physical friction cone C3 appears in the Figure for µ = 0.8. In this case,
it can be seen that the friction cone C3 intersects the line x1 − x5, so that the contact
arrangement is not tame. On the other hand, all contacts are quasi-flat, hence the feasible
equilibrium region satisfies R̃ ⊃ Π. For µ = 0.7, the contact arrangement becomes tame,

3



 
 

x

x1 

x2 
x3 

x4 
x5 

C3 

x 

y 

z 

(b) 

g 

(a) 

x1 

x2 
x3 

x4 
h 

l 

C3 
 

C4 
 

C2 
 

C1 
 

Figure 1: Examples of non-tame contact arrangements

while all contacts remains quasi-flat, hence the feasible equilibrium region satisfies R̃ = Π.
For µ < 1/

√
3 ≈ 0.577, the arrangement is tame but all contacts are no longer quasi-flat

(i.e. e ̸ ∈Ci) and the feasible equilibrium region lies strictly inside the support polygon, i.e.

R̃ ⊂ Π.

3 Exact computation of the equilibrium region

This section presents the main result of the paper — exact computation of the equilibrium
region R̃ and geometric characterization of its boundary. The basis of this computation is
a geometric interpretation of the static equilibrium equation (1). This equation lives in the
six-dimensional wrench space of forces and torques. The left hand side of (1) represents the
net wrench generated by the contact forces f 1 . . .fn. Each contact force f i is restricted to
lie within its (convex) friction cone Ci, defined in (2). Thus, the net wrench generated by
the contact forces spans a six-dimensional convex cone W in IR6, which is defined as

W =

{
n∑

i=1

(
f i

xi × f i

)
for all f i ∈ Ci, i = 1 . . . n

}
. (3)

As the horizontal projection of the center-of-mass x̃c varies within IR2, the right hand side
of (2) spans a two-dimensional affine plane in IR6, which is denoted P . For convenience, the
forces in (1) are scaled such that ∥f g∥ = 1. Thus, the affine plane P is defined as

P =

{(
e
τ

)
: e · τ = 0

}
. (4)

Physically, P gives all the wrenches that balance the gravitational wrench for some center-
of-mass horizontal position x̃c. Using the torque relation τ = xc × f g = e×xc, any wrench
(f , τ ) ∈ P corresponds to a unique value of x̃c according to

x̃c = −E(e× τ ). (5)
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The following key proposition utilizes the definitions of the wrench cone W and affine plane
P in the wrench space in order to define the construction of the feasible region R̃.

Proposition 3.1. Let a 3D object B be supported by n frictional contacts against gravity in
three-dimensions. The equilibrium region R̃ is obtained as

R̃ = {−E(e× τ ), for all

(
e
τ

)
∈ W ∩ P}, (6)

where W is defined in (3) and P is defined in (4). Moreover, the boundary of R̃ is given by

bdy(R̃) = {−E(e× τ ), for all

(
e
τ

)
∈ bdy(W ) ∩ P}. (7)

The rest of this section will thus follow the construction of R̃ as outlined in Proposition
3.1. First, the boundary of the wrench cone bdy(W ) is analyzed and characterized. Next, the

boundary of R̃ is constructed by computing the intersection bdy(W ) ∩ P and applying the
linear map in (5). The construction is demonstrated graphically in computational examples
in the next section.

The equilibrium region for frictionless contacts: We now briefly discuss the simple
case where all contacts are frictionless, for which the equilibrium region R̃ is easily computed.
In this case, the wrench cone W in (3) is a polyhedral convex cone of dimension min{6, n}.
Generically, the dimension of R̃ (if nonempty), which equals the dimension of W ∩P is given
by

dim(R̃) = min{2, n− 4}. (8)

That is, for n ≤ 3 frictionless contacts R̃ is empty, for n = 4 contacts R̃ is a single point, for
n = 5 contacts R̃ is a line segment, and for n ≥ 6 contacts R̃ is a convex polygon. Special
cases occur when one or more contacts are flat, i.e. ni = e. In these non-generic cases, the
formula (8) fails since the intersection of W and P is not transversal. An obvious example

appears in Fig. 1(a) where n = 4 and all contacts are flat, so that R̃ is fully two-dimensional,
in contrast to the prediction of a single point according to (8).

3.1 Computing the boundary of the wrench cone W

We now construct the boundary of the wrench cone W defined in (3), which is the cone of
all possible wrenches that can be generated by the contact reaction forces. This is the most
complicated part, which is at the core of this paper’s contribution. Equation (3) implies that
W is the image of a linear map L, which is given by

L : C → IR6, where C = C1 × C2 × . . . Cn and L(f 1,f 2, . . .fn) =
n∑

i=1

(
f i

xi × f i

)
(9)

The domain of L, denoted by C, which is simply the cartesian product of all friction cones,
is a stratified set that can be decomposed into cells (i.e. manifolds without a boundary),
as follows. Each friction cone Ci, defined in (2) is decomposed as the disjoint union Ci =
Oi ∪ Ii ∪ Si, where Oi = {0} is the cone’s vertex point, Ii is the interior of Ci, and Si is the
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boundary of Ci excluding the vertex point. Using this notation, the domain C is decomposed
into 3n different cells, as given by

C = (O1 ∪ I1 ∪ S1)× · · · × (On ∪ In ∪ Sn). (10)

Each cell is represented by a choice of one component from {Oi, Ii, Si} for i = 1 . . . n. Since
the convex wrench cone W , which is the image of C under L, is generically six-dimensional,
its boundary is a stratified set whose pieces are manifolds with dimension 5 or less. In what
follows, we focus on computing only the five-dimensional boundary pieces of W (generi-
cally, any boundary piece of lower dimension can be obtained as an intersection of several
5-dimensional boundary pieces). The following lemma characterizes the five-dimensional
boundary pieces of W in terms of critical points of the map L in (9), as follows.

Lemma 3.2. Let K be a cell of C as defined in (10). A five-dimensional boundary piece of
W associated with K is a subset of points from the image of K under L which satisfy

rank(DLκ) = 5, (11)

where DLκ is the Jacobian of the restriction of the map L to the cell K.

Note that the rank condition in this lemma is only a necessary condition for a boundary
(just like the derivative rule f ′(x) = 0 is only a necessary condition for an extremum point
of a scalar function f(x)). An additional condition which distinguishes the actual boundary
points is given at a later stage in Theorem 2.

In order to make a concrete use of the characterization in Lemma 3.2, one has to choose
a parametrization for each cell K ⊂ C of dimension d, formulate the restricted map Lκ in
terms of the chosen d parameters, and then compute the Jacobian matrix DLκ ∈ IR6×d and
find conditions for its rank deficiency. A cell K of dimension d can be assigned a suitable set
of d parameters according to its components, Si or Ii, as follows. A contact force f i in an
interior component Ii is parametrized simply by its cartesian coordinates in IR3. A contact
force f i ∈ Si is parametrized by the two scalars (λi, ϕi) ∈ IR+×S1, where λi > 0 is the force
magnitude and ϕi is the force angle, measured by projecting f i on the terrain’s tangent plane
at the contact xi. This plane is spanned by the unit vectors si and ti, such that {si, ti,ni}
is a right-handed orthonormal frame. Using these parameters, a force f i ∈ Si is given by

f i(λi, ϕi) = λiui(ϕi) such that ui(ϕi) = µ cos(ϕi)si + µ sin(ϕi)ti + ni (12)

Since ui(ϕi) has a fixed magnitude, u′
i(ϕi) = −µ sin(ϕi)si+µ cos(ϕi)ti is orthogonal to ui(ϕi).

The pair {ui(ϕi),u
′
i(ϕi)} spans the tangent plane to Si at f i(λi, ϕi), which will be denoted by

∆i(ϕi). Finally, we define ηi(ϕi) = ui(ϕi)×u′
i(ϕi) = −µ cos(ϕi)si − µ sin(ϕi)ti − µ2ni, which

is the outward-pointing normal to ∆i(ϕi) at f i(λi, ϕi). With a slight abuse of notation, we
will also interpret ∆i(ϕi) as planes embedded in the physical space, that is, planes which are
tangent to the friction cones Ci emanating from the contact points xi in the three-dimensional
space.

Next, the cells of C can be further divided into classes, in which the ordering of the
contacts is ignored. For a given force cell K from (10), let nS denote the number of choices
of boundary components Si, nI denote the number of choices of interior components Ii, while
the remaining n−nS−nI components are Oi which represent contacts with zero force. There
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are 1
2
(n + 1)(n + 2) possible choices of nS and nI , each representing a different cell class.

Each class can also be represented by a word from the alphabet {S, I}, where the first nI

letters are I and the following nS letters are S. For example, for n = 3 contacts, cell class IS
represents the six force cells: O1×S2×I3, O1×I2×S3, S1×O2×I3, I1×O2×S3, S1×I2×O3

and I1 × S2 ×O3. Note that cells of a given class all have the same dimensionality which is
the sum of the dimensions of their components, given by 2nS + 3nI . For example, for n = 3
contacts, the cell classes with dimension of 5 or higher are IS, II, III, SII, ISS and SSS.

The following Lemma lists all cell classes of contact forces from C that possibly contribute
to five-dimensional boundary pieces of the wrench cone W .

Lemma 3.3. Given an arrangement of n ≥ 3 contact points and their friction cones, the
classes of cells of C whose image under the map L contains five-dimensional pieces of the
boundary of the wrench cone W are: II, SI, SSI, SSS, SSSS and SSSSS only.

A proof of this lemma, which relies on 3.2, appears in the Appendix.
The following theorem gives algebraic and geometric characterization of the sets of

critical contact forces from all six cell classes listed in Lemma 3.3 that satisfy the condition
rank(DLκ) = 5. The image of these critical forces under L contains all five-dimensional
boundary pieces of the wrench cone W . For notational simplicity, we use the convention
that forces at the first contacts with indices 1 . . . nS lie within the boundary components
Si while forces at the next contacts with indices nS + 1 . . . nS + nI lie within the interior
components Ii, and the rest of the contact forces with indices nS +nI +1 . . . n are zero. This
arbitrary choice of contact ordering represents all other possible permutations of contacts
for any given cell class.

Theorem 1. Consider a given arrangement of n ≥ 3 contact points and their friction cones.
For each of the contact force classes listed in Lemma 3.3, the necessary conditions for critical
points that are mapped by L to candidate boundary points of W are:
1. Cell classes II and SI - the entire cells are critical points of L, and their image under L
is a subset of a five-dimensional linear subspace of IR6. Geometrically, it represents wrenches
that generate zero moment about the line connecting the contacts x1 and x2.
2. Cell class SSI — The cell is 7-dimensional, and is parametrized by f 3 ∈ IR3 and the
pairs (λ1, ϕ1) and (λ2, ϕ2), giving rise to 7 scalar parameters. The critical points of L within
the cell are described by the two scalar relations

η1(ϕ1) · (x2 − x3) = 0
η2(ϕ2) · (x2 − x3) = 0.

(13)

Conditions (13) imply that the angles ϕ1 and ϕ2 are constant while the magnitudes λ1 and λ2

and the contact force f 3 ∈ I3 vary freely within the cell. Thus, (13) defines a five-dimensional
set of critical points. Furthermore, for any particular solution ϕ∗

1, ϕ
∗
2 of (13), this set is a

five-dimensional linear subspace of IR6. The geometric interpretation of (13) is that the
angles ϕ∗

1 and ϕ∗
2 are chosen such that the tangent planes ∆1(ϕ

∗
1) and ∆2(ϕ

∗
2) of the physical

friction cones C1 and C2 both contain the contact point x3. There are up to 2 solutions for
each angle ϕ1, ϕ2 in (13), giving rise to four different linear subspaces of IR6. Each of these
linear subspaces contains wrenches that generate zero moment about the line of intersection
of the planes ∆1(ϕ

∗
1) and ∆2(ϕ

∗
2).
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3. Cell class SSS — The cell is 6-dimensional, and is parametrized by the three pairs
(λi, ϕi) for i = 1, 2, 3. The critical points of L within the cell are described by the scalar
relation

det

 s̄·ν1(ϕ1) s̄·ν2(ϕ2) s̄·ν3(ϕ3)
t̄·ν1(ϕ1) t̄·ν2(ϕ2) t̄·ν3(ϕ3)

n̄·(x1×ν1(ϕ1)) n̄·(x2×ν2(ϕ2)) n̄·(x3×ν3(ϕ3))

= 0 (14)

where νi(ϕi) = n̄×ηi(ϕi), n̄ is a unit vector normal to the plane ∆123 which passes through
the three contact points {x1,x2,x3}, and the unit vectors s̄ and t̄ are tangent to that plane,
such that {s̄, t̄, n̄} is an orthonormal frame. The condition (14) implies that the three angles
{ϕ1, ϕ2, ϕ3} lie on a two-dimensional manifold while the three magnitudes {λ1, λ2, λ3} vary
freely, thus the critical points are forming a five-dimensional manifold. The geometric inter-
pretation of (14) is that the angles {ϕ1, ϕ2, ϕ3} are chosen such that the intersection point of
the three tangent planes ∆1(ϕ1), ∆2(ϕ2),∆3(ϕ3) to the physical friction cones C1, C2, C3 lies
within the plane ∆123.
4. Cell class SSSS — The cell is 8-dimensional, and is parametrized by the four pairs
(λi, ϕi) for i = 1, 2, 3, 4. The critical points of L within the cell are described by angles ϕi

that satisfy three scalar equations of the form

det

 s̄·νa(ϕa) s̄·νb(ϕb) s̄·νc(ϕc)
t̄·νa(ϕa) t̄·νb(ϕb) t̄·νc(ϕc)

n̄·(xa×νa(ϕa)) n̄·(xb×νb(ϕb)) n̄·(xc×νc(ϕc))

= 0 (15)

where the indices a < b < c are chosen from the set {1, 2, 3, 4}, νi(ϕi) = n̄×ηi(ϕi),
n̄ is a unit vector normal to the plane ∆abc which passes through the three contact points
{xa,xb,xc}, and the unit vectors s̄ and t̄ are tangent to that plane, such that {s̄, t̄, n̄} is an
orthonormal frame. Using these three equations, the four angles ϕi lie in a one-dimensional
manifold while the four magnitudes λi vary freely, giving rise to a five-dimensional set of
critical points. Equivalently, The angles ϕi can be characterized by the existence of ω,v ∈ IR3

such that ||v||2 + ||ω||2 > 0, which satisfy

v · ui(ϕi) + ω · (xi×ui(ϕi)) = 0 and v · u′
i(ϕi) + ω · (xi×u′

i(ϕi)) = 0 (16)

for i = 1, 2, 3, 4.
5. Cell class SSSSS — The cell is 10-dimensional, and is parametrized by the five pairs
(λi, ϕi) for i = {1..5}. The critical points of L within the cell are described by angles ϕi that
satisfy five scalar equations of the form (15) where the indices a < b < c are chosen from
the set {1, 2, 3, 4, 5}. Using these five equations gives a finite number of solutions for the five
angles ϕi, which are held fixed while the the five magnitudes λi vary freely. Thus, the set
of critical points within the cell is a five-dimensional set. Furthermore, for each particular
solution for the angles ϕi, this set is a five-dimensional linear subspace of IR6. Equivalently,
The angles ϕi can be characterized by the existence of ω,v ∈ IR3 such that ||v||2+ ||ω||2 > 0,
which satisfy (16) for i = 1, 2, 3, 4, 5.

A proof of Theorem 1 appears in the Appendix. Importantly, the conditions which define
critical points of L given in Theorem 1 are only necessary for finding points on the boundary
of the wrench cone W . That is, a critical point in a force cell K ⊂ C can possibly be mapped
under Lκ to a point in the interior of W . The following Lemma complements the criticality
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conditions with a sufficient condition which characterizes critical points that map to the
actual boundary of W .

Lemma 3.4. Let K be a cell of C as defined in (10), and let f ∗ ∈ K be a critical point
of Lκ which satisfies the criticality condition (11). The image point w∗ = L(f ∗) lies on
the boundary of W if there exists a five-dimensional separating hyperplane H ⊂ IR6 passing
through w∗, such that all points w ∈ W lie on the same side of H. That is, there exists a
sign σ ∈ {−1,+1} that satisfies

σ(w · ηH) ≥ 0 for all w ∈ W, (17)

where ηH is the normal to the hyperplane H in IR6.

A key observation is that for each cell class K listed in Lemma 3.3, the criticality
conditions in Theorem 1 already imply the existence of a five-dimensional hyperplane H
which is locally tangent to the image of Lκ at a given candidate boundary point w∗ ∈ W .
Thus, one only needs to check whether the hyperplane H satisfies the separation condition
given in (17). The following theorem utilizes this observation in order to give concrete
conditions that describe the actual boundary of W .

Theorem 2. Consider a given arrangement of n ≥ 3 contact points and their friction cones.
For each cell class K ⊂ C listed in Lemma 3.3, conditions for critical points within K whose
image under the map Lκ lies on the actual boundary of the wrench cone W are given as
follows:

1. Cell classes SS and SI — the entire image of the cell under Lκ lies on the boundary of
W if and only if there exists a sign σ ∈ {−1,+1} that satisfies

σ ((x2 − x1) · (xi − x1)×ui(ϕ1)) ≥ 0 for all ϕi ∈ S1 and i ∈ {3 . . . n}. (18)

In particular, for a tame contact arrangement, if the projected contacts x̃1, x̃2 are two
adjacent vertices of the support polygon Π, then condition (18) is necessarily satisfied.
2. Cell class SSI — a critical point within the cell class is associated with fixed values of
the angles ϕ1 = ϕ∗

1 and ϕ2 = ϕ∗
2, that are determined by the conditions in (13). The image

of the critical point under L lies on the boundary of W if and only if there exists a sign
σ ∈ {−1,+1} which satisfies

σ(ν12 · (x1 − x3)×n1) ≥ 0, σ(ν12 · (x2 − x3)×n2) ≥ 0

and σ (ν12 · (xi − x3)×ui(ϕi)) ≥ 0 for all ϕi ∈ S1 and i ∈ {4 . . . n},

where ν12 = η1(ϕ
∗
1)×η2(ϕ

∗
2).

(19)

3. Cell class SSS — a critical point of L within the cell is associated with angles ϕ1, ϕ2

and ϕ3 that satisfy the relation (14). Let z denote the intersection point of the three planes
∆i(ϕi) which are tangent to the friction cones Ci in physical space. According to Theorem
1, the point z must lie on the plane ∆123 passing through the contacts points x1,x2 and x3,
whose normal is denoted by n̄. The image of a critical point under L lies on the boundary
of W if and only if there exists a sign σ ∈ {−1,+1} which satisfies

σ
(
n̄·((x1−z)× n1)

)
≥ 0, σ

(
n̄·((x2−z)× n2)

)
≥ 0, σ

(
n̄·((x3−z)× n3)

)
≥ 0

and σ
(
n̄·((xi−z)× ui(ϕi))

)
≥ 0 for all ϕi ∈ S1 and i ∈ {4 . . . n}.

(20)
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4. Cell class SSSS — a critical point of L within the cell is associated with angles ϕi for
which there exist ω,v ∈ IR3 that satisfy the relation (16) for i = 1, 2, 3, 4. The image of
a critical point under L lies on the actual boundary of W if and only if there exists a sign
σ ∈ {−1,+1} which satisfies

σ
(
v · ni + ω · (xi×ni)

)
≥ 0 for i = 1, 2, 3, 4, and

σ
(
v · ui(ϕi) + ω · (xi×ui(ϕi))

)
≥ 0 for all ϕi ∈ S1 and i ∈ {5 . . . n}.

(21)

5. Cell class SSSSS — a critical point of L within the cell is associated with angles ϕi

for which there exist ω,v ∈ IR3 which satisfy the relation (16) for i = 1 . . . 5. The image of
the critical point under L lies on the actual boundary of W if and only if there exists a sign
σ ∈ {−1,+1} which satisfies

σ
(
v · ni + ω · (xi×ni)

)
≥ 0 for i = 1 . . . 5, and

σ
(
v · ui(ϕi) + ω · (xi×ui(ϕi))

)
≥ 0 for all ϕi ∈ S1 and i ∈ {6 . . . n}.

(22)

A proof of Theorem 2 appears in the Appendix. Note that all the conditions mentioned
above require checking the sign of an expression of the form v · ui(ϕi) + ω · (xi×ui(ϕi)) for
all ϕi ∈ S1. This check can be reduced to computing extremum values of a function of the
form g(ϕi) = ai + bi cosϕi + ci sinϕi, which can be found explicitly.

3.2 Computing the boundary of R̃
We now combine the results of Theorems 1 and 2 that characterize the boundary of the
wrench cone W with the construction given in (7) in order to compute the boundary of

the equilibrium region R̃. The boundary of R̃ is a closed curve in IR2 which consists of a
concatenation of pieces of five possible types, each are associated with boundary pieces of
the wrench cone W . The following theorem summarizes the formulation of the five types of
boundary curves of R̃. For simplicity, each boundary curve is formulated under an arbitrary
assignment of indices to the contacts and contact forces, but represents the family of curves
obtained by applying all possible index permutations.

Theorem 3. Given an arrangement of n ≥ 3 contact points and their friction cones, the
horizontal cross-section of its equilibrium region R̃ is bounded by up to five possible types of
curves:

1. Two-contact SI/SS segment: a linear segment lying on the line x̃1− x̃2, which
is associated with nonzero contact forces f 1 and f 2 while f i = 0⃗ for i ∈ {3 . . . n}.
The endpoints of this linear segment can be obtained by solving a linear program for
x̃c,f 1,f 2 under the equilibrium equation (1) and the linear inequality constraints f i ∈
Ci ∩ V12 for i = 1, 2, where V12 is the plane spanned by the vertical direction e and the
line x̃2−x̃1.

2. Three-contact SSI segments: linear segment associated with contact forces f 1∈S1,
f 2 ∈ S2 and f 3 ∈ I3 while f i = 0 for all i ∈ {4 . . . n}. The forces f 1 and f 2 are
parametrized as f i = λ1ui(ϕ

∗
i ) for i = 1, 2, where ϕ∗

1, ϕ
∗
2 are solutions of equation (13)

10



that also satisfy the separation condition (19). Geometrically, an SSI segment lies on
the horizontal projection of the line of intersection of the two planes ∆1(ϕ

∗
1) and ∆2(ϕ

∗
2)

tangent to the friction cones Ci emanating at the contacts x1 and x2. The endpoints
of an SSI segment can be obtained by solving a linear program for x̃c, λ1, λ2,f 3 under
the equilibrium equation (1) and the inequality constraints λ1, λ2 ≥ 0 and f 3 ∈ C3∩P3,
where P3 is the plane spanned by the vertical direction e and the horizontal direction
ET (r̃12 − x̃3), where r12 is the intersection point of a horizontal line emanating from
x1 in the direction Eu1(ϕ

∗
1) and a horizontal line emanating from x2 in the direction

Eu2(ϕ
∗
2).

3. Three-contact SSS curve: a nonlinear curve associated with contact forces f i∈Si

for i = 1, 2, 3. The forces are parametrized by λi, ϕi, where the angles (ϕ1, ϕ2, ϕ3) lie
on the one-dimensional solution set of equation (14) combined with the equation:

det

[
Eu1(ϕ1) Eu2(ϕ2) Eu3(ϕ3)

e·(x1×u1(ϕ1)) e·(x2×u2(ϕ2)) e·(x3×u3(ϕ3))

]
= 0 (23)

Geometrically, (23) implies that the lines of the three contact forces intersect a common
vertical line, while (14) implies that the intersection point of the three tangent planes
∆1(ϕ1),∆2(ϕ2),∆3(ϕ3) lies on the plane spanned by x1, x2, and x3. Each particular
solution of (23) and (14) for ϕ1, ϕ2, ϕ3 which also satisfies the separation condition (20)

for some σ ∈ {−1,+1}, is associated with a potential point x̃c on the boundary of R̃,
as follows. First, the magnitudes λi are obtained by solving the 3×3 linear system:

λ1u1(ϕ1) + λ2u2(ϕ2) + λ3u3(ϕ3) = e (24)

Only if the solution of (24) satisfies λi ≥ 0 for i = 1, 2, 3, then it contributes a point

x̃c on the boundary of R̃, which is obtained as:

x̃c = −E (e× (λ1x1 × u1(ϕ1) + λ2x2 × u2(ϕ2) + λ3x3 × u3(ϕ3))) . (25)

4. Four-contact SSSS curve: a nonlinear curve associated with contact forces f i∈Si

for i = 1, 2, 3, 4. The forces are parametrized by λi, ϕi, where the angles ϕ1 . . . ϕ4 lie on
the one-dimensional solution set of three scalar equations of the form (15) where the
indices a < b < c are chosen from the set {1, 2, 3, 4}. Each particular solution for ϕi

which also satisfies the separation condition (21) for some σ ∈ {−1,+1}, is associated
with a potential point x̃c on the boundary of R̃, as follows. First, the magnitudes λi

are obtained by solving the 4×4 linear system:{
λ1u1(ϕ1) + λ2u2(ϕ2) + λ3u3(ϕ3) + λ1u1(ϕ1) = e

e · (λ1x1 × u1(ϕ1) + λ2x2 × u2(ϕ2) + λ3x3 × u3(ϕ3) + +λ4x4 × u4(ϕ4)) = 0.
(26)

Only if the solution of (26) satisfies λi ≥ 0 for i = 1, 2, 3, 4, then it contributes a point

x̃c on the boundary of R̃, which is obtained as:

x̃c = −E

(
e×

(
4∑

i=1

λixi × ui(ϕi)

))
. (27)

11



5. Five-contact SSSSS segments: linear segments associated with contact forces f i∈
Si for i = 1, 2, 3, 4, 5. The forces are parametrized by λi, ϕi, where the angles ϕi are
solutions of a system of five scalar equations of the form (15) where the indices a < b <
c are chosen from the set {1, 2, 3, 4, 5}. This system admits a finite number of solutions
for the angles ϕ1 . . . ϕ5. Each solution which satisfies the separation condition (22) for
some σ ∈ {−1,+1}, is associated with a line segment of x̃c values on the boundary

of R̃. This line segment is obtained by solving a linear program for x̃c, λi under the
equilibrium equation (1) and the linear inequalities λi ≥ 0.

A proof of the theorem appears in the Appendix.
Remarks on practical computation of the boundary of R̃: We now briefly discuss

practical computational aspects of implementing the recipe given in Theorem 3 for computing
the boundary of the equilibrium region R̃. As seen from the theorem, boundary curves of
types 1 and 2 are linear segments with a clear geometric meaning, and their endpoints can
be easily obtained by solving a low-dimensional linear programming problem.

Boundary curve of type 3 (SSS) is a nonlinear curve whose computation is based on
finding the one-dimensional solution set of the two equations (14) and (23) which are trigono-
metric in the angles ϕ1, ϕ2, ϕ3. Using the substitution βi = tan(ϕi/2), these equations can
be transformed to a system of two polynomial equations of degree 6 in βi. In [Or, Phd
Thesis 2007], it is further shown that dialytic elimination technique can be used to reduce
these two equations into a single polynomial of degree 16 in two variables β1, β2, where each
variable appears in degree 8. This equation can then be solved numerically by running β1

(or ϕ1) on a series of discrete values, finding the real roots of an eight-degree polynomial for
β2 numerically, and then solving a quadratic equation for the eliminated β3. An alternative
approach for computing a solution curve of (14) and (23) is to start from a known solution
point (ϕ1, ϕ2, ϕ3) and trace the solution curve numerically by marching along its tangent
vector which is obtained by differentiation of (14) and (23) as implicit functions. Finding
a starting point on the solution curve is sometimes possible due to the fact that endpoints
of type 3 boundary curves often coincide with endpoints of type 1 and type 2 boundary
segments, which are easily obtained. In case where no type 1 or type 2 segments exist on the
boundary of R̃, one can find a starting point on the boundary by solving a single query of a
convex programming problem of maximizing the projection of x̃c along a specific direction
in IR2 (see [Bretl and Lall, 2008] for example).

Boundary curve of type 4 (SSSS) is a nonlinear curve whose computation is based
on finding the one-dimensional solution set of three equations which are trigonometric in
the angles ϕ1, ϕ2, ϕ3, ϕ4. Using the substitution βi = tan(ϕi/2), these equations can be
transformed to a system of three polynomial equations of degree 6 in βi. Using dialytic
elimination, these three equations can be reduced into a single polynomial of degree 32 in
two variables β1, β2, where each variable appears in degree 16 (unpublished work). This
equation can then be solved numerically by running β1 (or ϕ1) on a series of discrete values,
finding the real roots of the 16-degree polynomial for β2 numerically, and then solving two
quadratic equations for the eliminated variables β3 and β4. Again, the solution curve can
alternatively be computed by numerical tracing along its tangent. As for finding a starting
point (ϕ1 . . . ϕ4) lying on the curve, an important observation is as follows. When tracing
the type-3 solution curve in (ϕ1, ϕ2, ϕ3) space while checking the separation condition (20), a
point where the second inequality in (20) crosses zero for some i = k precisely coincides with

12



a point where (ϕ1, ϕ2, ϕ3, ϕk) lies on type-4 solution curve. That is, starting point of type
4 boundary curves often lie on endpoints of type 3 curves where the separation inequality
condition vanishes.

Boundary segments of type 5 (SSSSS) require solving a system of five trigonometric
equations in the five angles ϕ1 . . . ϕ5. Using the substitution βi = tan(ϕi/2) and transforming
to polynomial equations, Bézout’s theorem implies that maximal number of possible solutions
to this system is 65. Finding all possible solutions is extremely complicated due to the high
dimensionality. Nevertheless, an important observation is that any endpoint of a type 5
linear segment, where one contact force vanishes, must be an endpoint of a type 4 curve,
precisely where the second inequality in the separation condition (21) crosses zero. Thus,
there is no need to explicitly solve for ϕ1 . . . ϕ5, and type 5 segments can be simply obtained
by connecting endpoints of type 4 curves by straight line segments.

Next, the following proposition which is stemming directly from Theorem 3 states that
the equilibrium region for a tame arrangement of n > 4 contacts can be constructed from
considering all possible 4-tuples of contacts.

Proposition 3.5. Consider a tame arrangement of n > 4 contact points and their friction
cones. The equilibrium region R̃ can be constructed as

R̃ = conv
{
R̃ijkl, i < j < k < l ∈ {1 . . . n}

}
, (28)

where conv denotes the convex hull and R̃ijkl is the equilibrium region associated with only
the four contacts xi,xj,xk,xl.

This proposition is analogous to the statement in [Or and Rimon, 2006] that in two
dimensions, the equilibrium region can be constructed by taking convex hull of all regions
associated with any pair of contacts.

3.3 Onset of non-static contact motions

According to Theorem 3, the boundary of the equilibrium region R̃ consists of five types
of curves, each associated with critical contact forces from a different cell class. When the
center-of-mass slowly moves such that its horizontal projection crosses the boundary of R̃,
static equilibrium can no longer be maintained and a non-static motion begins to evolve.
Importantly, the interactions at the contacts in this imminent motion are dictated by the
type of the boundary curve of R̃ which has been crossed and its associated force cell K, as
follows. If the force cell K contains a component of zero contact force Oi then the body
breaks contact at xi and the force f i vanishes. If the force cell K contains a component Si of
contact force f i that lies on the friction cone boundary Si then the contact at xi is slipping.
Finally, if the force cell K contains a component Ii of contact force f i lying within the
interior of the friction cone then body rolls about the contact at xi which is kept stationary.
Therefore, crossing each of the five types of boundary curves of R̃ can be associated to the
onset of a particular mode of non-static motion, listed as follows. Crossing type 1 boundary
segment associated with force cell class SI corresponds to tip-over motion of rolling about
the line connecting two stationary contacts while all other contacts are separating. Crossing
type 2 boundary segment associated with force cell class SSI corresponds to rolling about
a single stationary contact while two other contacts are slipping while all other contacts (if

13
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Figure 2: (a) The 3-contact arrangement in 3D. (b) Top view of the feasible equilibrium

region R̃ and its three types of boundary curves.

they exist) are separating. Finally, crossing boundary curves of types 3,4, and 5 which are
associated with force cell classes SSS, SSSS and SSSSS leads to onset of slippage at 3,4 or
5 contacts, while all other contacts (if they exist) are separating.

4 Computational examples

This section presents graphical examples of computing the equilibrium region R̃ for tame ar-
rangements of 3,4, and 5 frictional contacts. The coordinates of all contact locations are given
by cylindrical coordinates as xi = (xi, yi, zi) = (r cosϕi, r sinϕi, zi) for i = 1 . . . n. The con-
tact normals are expressed by x−z rotation angles as ni = (sinαi sin βi,− cosαi sin βi, cos βi),
and a uniform friction coefficient µ is assumed at all contacts. The following computational
examples involve arrangements of three, four and five contacts with uniform friction co-
efficient. The data of these contact arrangements is identical to the setup of the three
experiments which are presented in the next section.

Computational example - three contacts: the three contact locations are given by
r = 8/

√
3, ϕi = {−150◦,−30◦, 90◦} and zi = {1, 1, 1+ r/4}. The contact normals’ angles are

given by αi = {0◦, 0◦, 20◦} and βi = {0◦, 0◦, 15◦}, and the friction coefficient at all contacts
is 0.155. This contact arrangement, which is shown in Figure 2(a), can be verified as being

tame. Nevertheless, since the contact x3 is not quasi-flat it must satisfy x̃3 ̸ ∈R̃, and according
to Proposition 2.2 the equilibrium region is strictly contained in the support polygon R̃ ⊂ Π.
Figure 2(b) plots the equilibrium region R̃ for this contact arrangement in xy plane, whose

boundary is computed according to Theorem 3. The boundary of R̃ consists of two type-1
segments, one type-2 segments and one type-3 curve. Type-1 segment x̃1 − x̃2 is associated
with contact forces from the cell I1×I2×O3 and the portion of segment x̃2− x̃3 is associated
with contact forces from the cell O1 × I2 × I3. The type-2 SSI segment is associated with
critical contact forces from the cell I1 × S2 × S3. Finally, the type-3 curve is associated
with critical contact forces from the cell S1 × S2 × S3. Note that while computation of this
boundary curve involve solution of complicated nonlinear equations, the boundary curves of
types 1 and 2 are easily computed by solving simple linear programs. Thus, a reasonable
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Figure 3: (a) The 4-contact arrangement in 3D. (b) Top view of the feasible equilibrium

region R̃ and its four types of boundary curves.

and computationally cheap approximation of R̃ for this case could be obtained by replacing
the nonlinear type 3 curve by a straight line segment connecting the endpoints p and q, as
shown in a dashed line in the Figure. This gives a conservative polygonal region which is
contained in R̃ and captures almost all its area (97%)..

Computational example - four contacts: the four contact locations are given by
r = 5/

√
2, ϕi = {−135◦,−45◦, 45◦, 135◦} and zi = {1, 1 + r/4, 1, 1 + r/4}. The contact

normals’ angles are given by αi = {0◦, 15◦, 0◦, 60◦} and βi = {0◦,−15◦, 0◦, 20◦}, and the
friction coefficient at all contacts is 0.155. This contact arrangement, which is shown in
Figure 3(a), can be verified as being tame, but contacts x2 and x4 are not quasi-flat. Figure

3(b) plots the equilibrium region R̃ for this contact arrangement in xy plane. The boundary

of R̃ consists of a single II segment along the line x̃1 − x̃2, three SSI segments, four SSS
curves and two SSSS curves. The labels near each boundary piece give the indices of the
contacts associated with Si or Ii. One can see that using only II and SSI line segments and
connecting their endpoints by straight lines (dashed segments in Figure 3(b)) again gives

a conservative polygonal approximation of R̃ which reasonably captures the majority of its
area (92%).

Computational example - five contacts: the five contact locations are given by r =
5, ϕi = {−140◦,−70◦, 0◦, 70◦, 140◦} and zi = {1+ r/4, 1+ r/4, 1, 1, 1}. The contact normals’
angles are given by αi = {0◦,−30◦, 90◦, 30◦, 0◦} and βi = {−20◦,−30◦,−40◦, 30◦, 20◦}, and
the friction coefficient at all contacts is 0.155. This contact arrangement, which is shown in
Figure 4(a), can be verified as being tame, but none of the contacts are quasi-flat. Figure

4(b) plots the equilibrium region R̃ for this contact arrangement in xy plane. The boundary

of R̃ consists of a single II segment along the line x̃1 − x̃2, two SSI segments, five SSS
curves, four SSSS curves and two SSSSS curves. Note that the endpoints of the II segment
are connected to very short pieces of SSS and SSSS curves which are hardly visible in the
figure. The labels near each boundary piece give the indices of the contacts associated with

15



�

�

�

�

  

-4 -2 0 2 4

-4

-2

0

2

4

-4

0

4

-4
0

4
0

2

4

x1 

x2 x3 

x  y  

z  

(a)  
x  

y  

�
�

�

 

�
�

�

 

�
�

�

 

�
�

�

 

R 
~ 

I1I5  

S2S3I4  

(b)  

�
�

�

 

�
�

�

 

S3S4I2  

S2S3S4  
S1S2S3S4  

S1S2S3S4S5 

x4  

x5  

�
�

�

 

�
�

�

 

�
�

�

 

�
�

�

 

S1S2S3S4S5 

S2S3S4  

S2S3S4  
S2S3S4S5  

C3 

 

C2 

 

C1 

 

C4 

 C5 

 

Figure 4: (a) The 5-contact arrangement in 3D. (b) Top view of the feasible equilibrium

region R̃ and its five types of boundary curves.

it Si or Ii. One can see that using only SSI line segments and connecting their endpoints by
straight lines (dashed segments in Figure 4(b)) gives a conservative polygonal approximation

of R̃ which captures most of its area (81%).

In order to validate Proposition 3.5, Figure 5(a) shows the five equilibrium regions R̃ijkl

associated with four contacts for the same five-contact arrangement. One can see that the
equilibrium region R̃ under five contacts (dashed curve) is indeed obtained as the convex hull
of all four-contact regions. Finally, Figure 5(b) demonstrates the changes in the five-contact

equilibrium region R̃ while the friction coefficient µ at all contacts is varied. Upon decreasing
µ, the equilibrium region R̃ is monotonically shrinking. Starting with µ = 0.85, all contacts
are quasi-flat but the arrangement is still tame, hence R̃ is precisely the support polygon,
as stated in Proposition 2.2. For µ = 0.6 the contact x3 is no longer quasi-flat, hence x̃3

is no longer contained in R̃. For µ = 0.4, only contacts x1 and x5 are still quasi-flat, so
x̃2, x̃3 and x̃4 are no longer contained in R̃. For µ = 0.28, all contacts are not quasi-flat but
the boundary of R̃ still contains one type 1 boundary segment that lies on the line x̃1 − x̃5.
µ = 0.155 is the same value for which R̃ is computed in Figure 4(b). The equilibrium region

R̃ is also shown for µ = 0.1 and µ = 0.05. For µ → 0 the equilibrium region shrinks to
a single line segment, shown as the dashed line in the Figure. Note that the four-contact
arrangement shown in Figure 3 is non-generic in the sense that the contacts x1 and x2 are
flat i.e. n1 = n2 = e. Thus, for frictionless contacts the equilibrium region R̃ degenerates to
the line segment x̃1 − x̃2. This is in contrast to (8) that predicts that R̃ reduces to a single
point for µ = 0. Similarly, the three-contact arrangement in Figure 2 is also non-generic since
x1 and x2 are flat. Thus, for frictionless contacts R̃ degenerates the line segment x̃1 − x̃2.
This is in contrast to (8) that predicts that R̃ becomes empty for µ = 0. An example of R̃
becoming empty for n = 3 contacts with µ → 0 has been shown in our previous paper.
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Figure 5: (a) The 5-contact arrangement in 3D. (b) Top view of the feasible equilibrium

region R̃ and its five types of boundary curves.

5 Experimental results

This section describes experiments that measure the equilibrium region of a mutli-legged
mechanism with a movable center of mass, which supported by a frictional terrain against
gravity, as shown in Figure 6. The experiments have been conducted by the undergraduate
students Erez Abitbul and Shai Tabib and the ME student Michael Dvorkin, at the labora-
tory of robot motion in the Technion. The objective of these experiments is to validate the
analytical characterization of the equilibrium region R̃. The mechanism consists of a rigid
aluminium ring with 36 holes around an outer circle of diameter 240mm. Three, four, or five
extendible legs can be mounted to these holes, where each leg ends with a spherical footpad
in order to maintain a point contact with its support. The legs are made of stainless steel,
and are composed of inner and outer cylinders which can be assembled in three different
lengths at 30mm increments. They can also be placed in any of the holes of the outer circle
in order to control the relative positions of the contact points. Each footpad is supported
by a stainless steel plate attached to a pair of V-shaped wooden plates whose relative angle
can be varied continuously via lead screws, in order to control the direction of the contact
normals. The mechanism’s center of mass can be varied by sliding a heavy steel cylinder
along linear guides which are rigidly connected to a base frame. The base frame can be
mounted on top of the circular ring with screws that can be inserted in 24 different holes
on the perimeter of an inner circle of diameter 189mm, allowing linear shift of the center
of mass along different directions. The mass of each leg is 0.82 kg. The total mass of the
circular ring, the rigidly attached base frame, and the linear guides is 6.17kg. The mass of
the moving weight is 4.25 kg.

The coefficient of static friction between the footpads and supporting plates was mea-
sured in a preliminary experiment, in which a horizontal force was applied to the mechanism
while its footpads are supported by horizontal plates. The horizontal force was applied by
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Figure 6: Experimental setup of a the legged mechanism with (a) four legs, and (b) five legs.

hanging a variable weight on a string attached to the mechanism through a pulley. Measur-
ing the critical weight that causes slippage of the footpads, the average coefficient of static
friction has been determined as µ̄ = 0.155 with a standard deviation of σ=±0.02.

The process of measuring the boundary of R̃ is as follows. After assembling the chosen
number of legs with desired lengths and relative positions, the mechanism is placed in static
equilibrium on the supporting plates, whose positions and slopes are chosen according to
the desired contact arrangement. The movable heavy cylinder is initially placed above the
circular ring’s center. Next, it is moved slowly outward along its guides in 1 mm increments,
pausing after each increment to check that it maintains equilibrium while all contacts are
stationary. This process continues until the mechanism’s center of mass reaches the boundary
of the equilibrium region, where a critical event of contact breakage or slippage is observed
at one or more footpads. The critical center-of-mass position and the observed mode of non-
static motion at the contacts are recorded, and the process is iterated several time in order
to collect multiple measurements. Next, the base frame is mounted at a different orientation
with respect to the ring, and the process is repeated. The orientations of the base frame
eventually cover a full circle with 15◦ resolution, giving a discrete mapping of the boundary
of R̃.

The experiments were conducted for three, four and five legs. The chosen contact
arrangements were identical to the computational examples in section 4, as shown in Figures
2, 3 and 4, where the length units in the figures are scaled by a multiplying factor in order
to match the actual size of the mechanism (i.e. r = 240mm). The experimental setup
for four- and five-contact arragements are shown in Figures 6(a) and 6(b), respectively.
The experimental results of the critical center-of-mass locations that compose the measured
points on the boundary of the equilibrium region R̃ for the 3,4,5- contact arrangements are
shown in Figures 7(a),(b),(c) respectively. The inner and outer equilibrium regions which
are theoretically computed for friction coefficients of µ̄ − σ and µ̄ + σ are also overlayed in
the figures, denoted by solid curves. Three different modes of motion were visually detected
in the experiments: points marked by circles denote rolling over two contact points while all
other contacts are separating. Points marked by squares denote rolling about one contact
while the other contacts are either slipping or separating. Points marked by ′×′ denote
simultaneous slippage at three or more contacts. A more elaborate distinction between all
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Figure 7: Experimental results of measured boundary of R̃ for (a) three legs, (b) four legs,
and (c) five legs.
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possible non-static contact modes by visual inspection only turned out to be impossible. The
results show good agreement between the experimental measurements and the theoretical
computation of the equilibrium region R̃ in all cases. In particular, it can be seen that
the boundary points associated with two-contact rolling (marked by ’×’ in the figures) are
very accurate and display very small variations. This is because crossing these boundary
points, which lie on segments of the support polygon, depends only on the geometry of the
contact locations. On the other hand, measurement of boundary points of R̃ that involve
slippage suffer from much larger variations. This is because their exact position depend
on the friction coefficient, which is itself a sensitive quantity that is subject to variations.
Nevertheless, most of the boundary points fall well within the range between the computed
boundaries for µ = µ̄± σ.

6 Polygonal approximation of the equilibrium region

This section complements the analytic results with a practical and efficient procedure for
computing a polygonal approximation of the equilibrium region R̃. The procedure is based
on approximating the frictional constraints (2) by linear inequalities and then using standard
techniques for projecting a high-dimensional polyhedral region onto a two-dimensional plane
in order to obtain inner and outer polygonal approximations for the boundary of R̃. It
is slightly different from the adaptive algorithm presented by Bretl and Lall (2008), which
solves a sequence of quadratic convex programming problems in order to compute inner and
outer polygonal approximations and refine them iteratively. Our approach has recently been
used in the work [Geva and Shapiro, 2013] for quasistatic motion planning of a quadruped
robot on unstructured terrain.

The computation of R̃ can be represented as a problem of projecting a high-dimensional
convex region onto a two-dimensional plane, which then naturally leads to a polygonal ap-
proximation of R̃, as follows. Recall that f = (f 1,f 2, . . .fn) ∈ IR3n denote the n contact
forces. The static equilibrium equation (1) depends linearly on the contact forces, f , as
well as on the horizontal projection of the center-of-mass, x̃c. Hence it can be written in
matrix form as Af = Bx̃c. The frictional inequality constraints f i∈Ci specified in (2) for
i=1 . . . n, along with the equilibrium condition (1) which adds six scalar linear equations,
define a convex region, denoted E , of dimension (3n+2)−6 = 3n−4 in the composite space of
(f , x̃c). This region encodes all combinations of contact forces and center-of-mass locations
which give a feasible solution of the static equilibrium condition subject to the frictional
constraints. The projection of E onto the x̃c-plane is precisely the equilibrium region R̃. If
the quadratic friction cones Ci in (2) are approximated by polyhedral cones, the inequalities
f i ∈ Ci become linear, and the region E becomes a convex polyhedron. The projection of
E onto the x̃-plane can be computed using standard projection algorithms such as Fourier-
Motzkin method. Consider polyhedral cone C ′

i with m facets inscribed in the friction cone
Ci (Figure 8(a)). The inscribed polyhedral cone is given by m linear inequalities,

C ′
i = {f i : (sin((j + 1)β)− sin(jβ))(f i · si) + (cos(jβ)− cos((j + 1)β))(f i · ti)

≤ µi sin β(f i · ni) , j = 1 . . .m},
(29)

where β=2π/n and si, ti are two unit vectors such that {si, ti,ni} is a right-handed orthonor-
mal frame at xi. The linear inequalities f i ∈ C ′

i for i= 1 . . . n along with the equilibrium
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(a) (b) 

Figure 8: A six-facet approximation of the quadratic friction cone Ci by (a) an inscribed
polyhedral cone C ′

i, and by (b) a circumscribing polyhedral cone C ′′
i .

equalities (1) define a polyhedral region E ′ in (f , x̃c)-space. Moreover, since C ′
i ⊂ Ci for

i = 1 . . . n, this region satisfies E ′ ⊂ E . The projection of E ′ on the x̃c-plane gives a polygo-

nal region R̃
′
⊂ R̃ that serves as an inner approximation for R̃. This inner approximation

can be made arbitrarily accurate by increasing the number of facets in C ′
i. According to the

analysis in [Ponce et al 1997] (which used the projection for computing 4-finger equilibrium
grasps), the computation time of projection using Fourier-Motzkin method is O(mnp), where

p is the number of vertices in the resulting polygon R̃
′
. Similarly, one can define a second

m-facet polyhedral cone, C ′′
i , that circumscribes the quadratic friction cone Ci for i=1 . . . n

(Figure 8(b)), by simply replacing µi in the inequalities (29) by µi/ cos(π/m). Using C ′′
i

instead of C ′
i results in a polyhedral region E ′′ ⊃ E in (f , x̃c)-space, whose projection on the

x̃c-plane gives an outer approximation polygon, R̃
′′
⊂ R̃.

Graphical example: Figure 9(a) shows an arrangement of five contacts and their physical
friction cones in 3D. Figure 9(b) shows a top view (xy plane) of the contacts. The shaded

region is the polygonal approximation of the equilibrium region, R̃
′
, obtained by projection

of the polyhedral region E ′ where the friction cones are approximated by polyhedral cones

C ′
i with m = 6 facets. The outer approximation R̃

′′
appears in the dashed lines. Note

that the polygons R̃
′
and R̃

′′
are sensitive to the choice of the tangent vectors si and ti in

(29). Nevertheless, they give a tight bound to R̃, whose exact boundary must lie somewhere
between the inner and outer polygons.

The procedure given above is a relatively efficient computational tool for approximating
the equilibrium region R̃, where the accuracy can be controlled by choosing the number of
facets m. The main limitation of this procedure is the lack of any physical intuition and
geometric characterization on the boundary of R̃. For instance, Figure 9(b) indicates that

the exact boundary of R̃ may consist of a combination of linear segments and nonlinear
curves, without any apparent classification. The next section, which presents the exact
computation of R̃, gives the classification into different types of boundary curves, along with
their association to particular sets of constraints on the contact forces.
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Figure 9: (a) A five-contact arrangement. (b) Top view with the inner and outer approxi-

mations R̃
′
and R̃

′′
of the equilibrium region.
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