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Abstract—Robotic swimmers are currently a subject of
extensive research and development for several underwater
applications. Clever design and planning must rely on simple
theoretical models that account for the swimmer and fluid
dynamics in order to optimize the swimmer’s structure and
the choice of control inputs. In this work, we study the dy-
namics of a planar snake-like multi-link swimmer by using the
“perfect fluid” model that accounts for inertial hydrodynamic
forces while neglecting viscous drag effects. The swimmer’s
equations of motion are formulated and reduced into a first-
order system due to symmetries and conservation of generalized
momentum variables. Focusing on oscillatory inputs of joint
angles, we study optimal gaits for 3-link and 5-link swimmers
via numerical integration. For the 3-link swimmer, we also
provide a small-amplitude asymptotic solution which enables
obtaining closed-form dependence of swimming distance on the
swimmer’s parameters and finding analytic approximations for
optimal gaits. The theoretical results are then corroborated by
experiments and motion measurement of untethered robotic
prototypes with 3 and 5 links, showing a reasonable agreement
between experiments and the theoretical model.

I. Introduction
Autonomous swimming robots have a promising potential

for various applications such as surveillance and protection
in marine environment, search and rescue missions, and
maintenance operations within pipe systems of complex
infrastructures [1], [2], [3], [4]. A leading biologically-
inspired concept of articulated mobile robots is a snake-
like kinematic chain that undergoes body undulations of a
travelling wave where the joint angles undergo phase-shifted
oscillatory motion [5], [6], [7], [8]. Coordination between the
links and optimization of the gait of periodic shape changes is
highly crucial for generating effective net motion. Terrestrial
snakes whose motion is governed by rigid-body contact
mechanics have been widely explored for several decades
[9], [10], [11]. On the other hand, the motion of swimming
snake robots is governed by hydrodynamic interaction be-
tween the fluid and the robots. Several theoretical models
of the hydrodynamics of swimming have been studied, with
varying level of accuracy and computational complexity.
Some works use coefficients of lift and/or drag forces, which
are tuned empirically [6], [12], [13], [14]. Other works
consider the interaction of the swimmer with vortices shed
by the undulating tail [15], [16]. A remarkably simple model
is that of “perfect fluid” [17], [18], [19], which assumes
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inviscid irrotational potential flow, where the swimmer-fluid
interaction is induced by reactive forces that represent added
mass effect, associated with the momentum required in order
to displace the fluid surrounding the swimmer’s links [20].
Using this model, invariance of the dynamics under rigid-
body transformation enables reduction into a system of first-
order differential equations. These time-invariant equations
relate the swimmer’s body motion to the velocities of shape
variables (i.e. joint angles), which are assumed to be directly
prescribed. The same structure of the dynamic equations also
holds for other locomotion systems such as wheeled vehicles
[21], [22] and micro-swimmers in Stokes flow [23], [24].
Such systems are widely studied in the robotics literature,
using methods of differential geometry and notions of Lie
groups [25], [26]. Most of previous works in this field
have studied gait planning for achieving desired net motion,
which is computed by using numerical integration [22]
or by applying approximate area-integral rules [27], [28].
Optimization of gaits for achieving maximal displacement
or energetic efficiency has also been studied, and mainly
involved numerical computations [29]. Finally, only few of
the theoretical models of robotic swimming models have
been tested experimentally [6], [12], [14].

The goal of this work is to revisit the “perfect fluid” model
and formulate the reduced equations of motion for planar
multi-link swimmers. Focusing on small-amplitude harmonic
inputs of joint angles, we use perturbation expansion [30],
[31] in order to obtain asymptotic expressions for the net
motion of the three-link swimmer. These expressions enable
analysis and optimization of joint angles’ stroke amplitude
and relative phase, as well as links’ length ratio, for achieving
maximal net displacement. Additionally, explicit expression
for the curvature of net motion as a function of angles oscil-
lation offset is obtained, which enables simple generation
of moderate turning motions. For the five-link swimmer,
optimization of stroke amplitude and phase difference be-
tween consecutive joints is conducted numerically, and a
global optimizer is obtained. Validity of the “perfect fluid”
model is tested by conducting controlled motion experiments
of untethered floating prototypes of the three- and five-
link swimmers. The experimental and theoretical results are
compared by using motion measurements from an optical
tracking system. Good qualitative and reasonable quantitative
agreement is obtained, after calibrating the added mass effect
to account only for the submerged part of the robot’s links.
Additionally, experimental results that demonstrate optimal
phase difference between joints are also shown. This study
thus proves the usefulness of the “perfect fluid” model as a
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Fig. 1: Swimmer models. (x, y) are the position of the body-fixed reference frame origin. β is the rotation angle of the
reference frame. ai and bi are the major and minor radii of the elliptic links. (a) 3-link swimmer model. (b) 5-link swimmer
model.

simplified theoretical tool for studying the dynamics, control
and gait optimization of swimming robots. The paper is
organized as follows. The next section presents the problem
statement and formulation of the dynamic equations. Section
III includes asymptotic analysis of the three-link swimmer.
Section IV contains numerical simulations and optimization
of gaits for three- and five-link swimmers. Section V presents
experimental results, and section VI discusses their compar-
ison with prediction of the theoretical model. The closing
section summarizes the results and lists possible directions
for future extensions of the research. In order to make our
analysis accessible to a broader audience of the robotics
research community, we chose not to use advanced notions
of geometric mechanics such as Lie groups and Riemannian
geometry as in previous works [25], [26], [28]. Instead,
the swimmer’s dynamics is formulated using elementary
terminology of linear algebra, vector calculus, and ordinary
differential equations.

II. Problem formulation

We now describe the theoretical model of the swimmer
and formulate its dynamic equations of motion using the
“perfect fluid” hydrodynamic model. The planar swimmers
shown in Fig 1a and 1b respectively, consist of N = 3 and
N = 5 links connected by revolute joints. The swimmers’
motion is restricted to translation in (x, y) plane and rotations
about z axis. Each link is an ellipse with principal radii of
ai,bi and density ρ, that has mass mi and moment of inertia
Ii . In order to avoid collisions between adjacent links, the
distance between the center of the ith link and the adjacent
joint is li > ai . The relative angles between links are denoted
by θi . The swimmer is submerged in an unbounded domain
of ideal fluid with density ρ. That is, the swimmer is neutrally
buoyant and gravity effects are not considered. It is assumed
that the joint angles are directly controlled, and undergo
harmonic oscillations of the form

θi(t) = Asin(ωt +ϕi). (1)

In order to formulate the dynamic equations that govern
the swimmer’s motion, generalized coordinates are chosen
as q = (qb,qs), where the body coordinates qb = (x, y, β)
describe the position and orientation of a body-fixed frame
Fb attached to link number ‘0’, while the shape coordinates
qs = (θ1, . . ., θN−1) are the swimmer’s joint angles, see Fig 1.
Using Lagrange’s formulation, the equations of motion are
given in matrix form as:

H(q)Üq+B( Ûq,q) = Fh+Q (2)

where H is the swimmer’s inertia matrix, B contains velocity-
dependent terms, Fh is a vector of hydrodynamic forces
applied by the fluid, and Q(t) = [0,0,0, τ1(t), . . ., τN−1(t)]T
contains generalized forces induced by the joints’ torques.
The inertia matrix H is related to the swimmer’s kinetic
energy T through the relation T = 1

2 ÛqTH(q) Ûq. This matrix
can also be written explicitly as

H =
N∑
i=1

JTi (q)MiJi(q),where Mi =


mi 0 0
0 mi 0
0 0 Ii

 . (3)

The Jacobian matrices Ji in (3) satisfy the kinematic relations
vi = Ji Ûq, where vi = [ Ûx ′i, Ûy′i,ωi]T is the linear and angular
velocity of the ith link expressed in a frame Fi attached
to its principal axes. Using the “perfect fluid” model [17],
[18], it is assumed that the fluid is governed by irrotational
potential flow where viscous drag effects are neglected [20].
For simplicity, we follow [24] and neglect also the hydro-
dynamic interaction between the links. This implies that the
hydrodynamic force acting on the ith link is decoupled from
all other links, and satisfies

Fi =M′iai, where M′i = πρ

b2
i 0 0

0 a2
i 0

0 0 1
8 (a2

i − b2
i )

 , (4)

and ai is the linear and angular acceleration of the ith link
expressed in the frame Fi . The matrix M′i in (4) is the added
mass tensor of an ellipse-shaped body [17], [20], which is
related to the momentum of the fluid that is displaced by the



accelerating link. The relation (4) enables elimination of the
hydrodynamic forces Fh from (2) and replacing them by an
addition to the system’s kinetic energy and matrix of inertia,
as:

T = 1
2 ÛqT H̃(q) Ûq = 1

2

(
vb
Ûqs

)T [
Mbb Mbs

MT
bs

Mss

] (
vb
Ûqs

)
where H̃(q) =

N∑
i=1

JTi (q)[Mi +M′i]Ji(q)
(5)

and vb = [ Ûx ′, Ûy′,ωb] is the linear and angular velocity of the
body frame Fb expressed in the frame Fb . This body-fixed
velocity is related to the swimmer’s absolute body velocity
via the kinematic equation

Ûqb = R(β)vb, where R(β)=

cos β −sin β 0
sin β cos β 0

0 0 1

 (6)

The matrices Mbb,Mbs , and Mss in (5), which depend only
on the shape variables qs , are sub-blocks of H̃(q) expressed
in the frame Fb by substituting β = 0. Note that the use of
body-frame velocities vb in (5) is possible due to the assump-
tion of unbounded fluid domain that induces invariance of
the dynamics with respect to rigid-body transformations (also
known as gauge symmetry [26]). A well-known observation
[24], [25] is that this invariance induces conservation of
generalized momentum variables, formulated as:

d
dt
(Mbb(qs)vb +Mbs(qs) Ûqs) = 0 (7)

Starting from rest (vb = Ûqs = 0) gives the relation between
body velocity and shape changes, as:

vb = −Mbb(qs)−1Mbs(qs) Ûqs = A(qs) Ûqs (8)

Thus, the equation of motion (2) is reduced into a first-
order system, augmented by the kinematic relation (6). Time-
invariance of equation (8) (also known as the system’s
connections [25], [26]) implies that under a periodic input
of shape changes, the net motion over a period depends only
on the trajectory qs(t) (i.e. gait) and not on the time-rate of
the motion.

III. Asymptotic analysis of 3-link swimmer
In this section we derive the leading-order expression

and next order correction for the displacement of a 3-link
swimmer over one period of harmonic inputs. First, we define
some non-dimensional constants describing the swimmer’s
geometry. The ratio between the links’ principal radii is
denoted by a uniform α = bi/ai and the links’ length ratio
by η = 2l0/l where l is the full length of the swimmer
l = 2(l0 + l1 + l2). For simplicity, we assume that there is no
spacing between the links, i.e. ai = li . The joint angles are
given by θi = εsi(t), where ε is the stroke amplitude and si(t)
is the unscaled gait trajectory given by:

s1(t) = −cos(t −ϕ/2), s2(t) = cos(t +ϕ/2) (9)

with t ∈ [0,2π]. Equation (8) now becomes:

vb = A(ε, t)εÛs, (10)

where s = [s1, s2]T . This equation can be expanded as

vb =
(
A(0, t)+ε ∂A(ε, t)

∂ε

����
0
+ε2 1

2!
∂2A(ε, t)
∂ε2

����
0
+. . .

)
εÛs (11)

Where all derivatives in (11) are evaluated at ε = 0. This
gives the expansion of body-fixed velocities as:

vb(t) = εv(1)
b
+ ε2v(2)

b
+ . . . (12)

While the body position x(t), y(t) cannot be directly inte-
grated from the body fixed velocities Ûx ′, Ûy′, the orientation
angle β can be integrated from the expansion of ωb(t) in (12)
as β(t) = εβ(1) + ε2β(2) + . . .. Next, we expand the rotation
matrix R in (6) as:

R(β) = I+ β

0 −1 0
1 0 0
0 0 0

 + β2

−1 0 0
0 −1 0
0 0 0

 + . . .
= I+ εR(1)+ ε2R(2)+ . . . (13)

Where I is the 3×3 identity matrix. Substituting the expan-
sions for R in (13) and for vb in (8) into (6) and rearranging
into power series in ε, we obtain an expansion for x(t) and
y(t). Due to symmetries of the gait in (9), it can be shown
that the net displacement in y direction vanishes [23], [31].
The motion in x direction can be obtained from integration
over the period time:

X =
∫ T

0
Ûx(t)dt, (14)

which gives the following expansion:

X = ε2X (2)+ ε4X (4)+O(ε6) (15)
where,

X (2) = f1(η)sinϕ > 0
X (4) = f2(η)sinϕ+ f3(η)sin2ϕ

The functions f1(η), f2(η) and f3(η) depend on the links’
aspect ratio α in a very cumbersome way. For concreteness,
we choose α = 0.5 which is close to that of the experimental
prototypes and gives much simpler expressions. The func-
tions f1(η), f2(η) and f3(η) for α = 0.5 are given in Table I.

For a phase difference of ϕ > 1[rad], X (4) is negative,
and thus for large amplitude ε, the swimming direction is
reversed. Moreover, there exists an optimal amplitude ε∗

TABLE I: Expressions from equation (15) for α = 0.5

f1(η) =
πlη(η−1)5

(
78η3+511η2+114η+29

)
4
(
3η2−2η+1

)2
P1(η)

f2(η) =
−πlη(η−1)5P2(η)

64
(
3η2 −2η+1

)4
P1(η)3

f3(η) =
πlη(η−1)5P3(η)

128
(
3η2 −2η+1

)4
P1(η)3

P1(η) =
(
−333η4+196η3+170η2+116η−221

)
P2(η) = 3119734251η15−3070539495η14−11677468041η13+25870509185η12−19032800901η11+

5503302973η10−4437032321η9+9942070757η8−10156151831η7+4574010219η6+
973272381η5−2844406429η4+1987499057η3−771302273η2+189030989η−17941001

P3(η) = 2764445895η15 −8663576859η14 +9431287407η13 −4965255883η12 +6399003543η11−
12206561479η10 +12080221351η9 −6386459751η8 +1644304573η7 −399495473η6+
1027495461η5 −1126099745η4 +434875109η3 +17293779η2 −60307771η+20773779
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Fig. 2: Numerical simulation and asymptotic approximations for the three link swimmer. (a) X vs ε for ϕ = π/2, η = 1/3,
(b) X vs ϕ for ε = π/4, η = 1/3, (c) X vs η for ε = π/4, ϕ = π/2.

that maximizes X , which is approximated from (15) as ε∗ =√
|X (4) |/2X (2). Next, we consider the influence of the phase

difference ϕ on the displacement X for a given amplitude ε.
From (15), it is obvious that X vanishes for ϕ = {0, π}. This
is because in these cases the shape change is time-reversible
[23], [24]. Moreover, there exists an intermediate value
of optimal phase ϕ∗ that achieves maximal displacement.
Considering only the leading-order term X (2) in (15) gives
optimal phase of ϕ∗ = π/2, but the next order term adds a
correction to this optimal value. From (15), the optimal phase
difference can be obtained as:

ϕ∗ = cos−1
[(
−D1±

√
D2

1 +16D2
2

)
/4D2

]
(16)

where,
D1 = ε

2 f1(η)+ ε4 f2(η) and D2 = ε
4 f3(η)

Additionally, we consider optimization with respect to the
length ratio η for a fixed total length l of the swimmer. It
can clearly be seen from (15) and Table I that for η = 0 and
η = 1 the displacement X vanishes, since one or two links
of the swimmer have zero length. Using only the leading-
order expression X (2) in (15), the optimum of the polynomial
f1(η) is numerically calculated as η∗ = 0.3546, indicating
that the three links should be of nearly equal lengths. This
result reveals a significant distinction from Purcell’s 3-link
microswimmer in a viscous fluid, whose optimal link ratio
is η ≈ 0.25, so that l1 = l2 ≈ 1.5l0.

Another possible manoeuvre of the swimmer is moderate
turning obtained by performing small-amplitude oscillations
about a constant angle γ so that the joint angles are θ1(t) =
−γ − ε cos(t − ϕ/2), θ2(t) = γ + ε cos(t + ϕ/2)). The leading-
order terms for the displacement X and the net rotation ∆β
under this actuation with η = 1/3 and α = 0.5 are:

X (2) =
πl sin(ϕ)(−125184C5−355448C4−32802C3+743779C2+848034C+309286)

9(C2+2)(262C2+768C+593)2
(17)

∆β(2) =
128π sin(ϕ)S(−652C4−1437C3+455C2+3339C+2534)

(C2+2)(262C2+768C+593)2 (18)

where C = cos(γ) and S = sin(γ). The net displacement in
the y direction is only of order O(ε4). Eqs. (17)-(18) show

that in addition to the displacement in the x direction, the
swimmer has net rotation ∆β over a period. This allows the
swimmer to perform an arclike motion. The curvature of the
resulting trajectory of the swimmer κ = ∆βX for a small offset
angle γ is κ = 3.52γ/l. Animations of the simulated motion
of the swimmer under this actuation can be found in the
multimedia extension.

IV. Numerical simulations and gaits

We now present the results of numerical simulations of
the motion of a 3-link swimmer and compare to the asymp-
totic approximation. Additionally, we numerically obtain the
optimal combination of gait amplitude and phase difference
for both 3-link and 5-link swimmers. In Fig. 2, the solid
lines represent the numerical calculation, the dashed lines
represent the results using only the leading-order approx-
imation and the dash-dotted lines are the results with the
next order correction. Numerical integration of the dynamic
equation of motion (8) has been performed using adaptive
Runge-Kutta procedure ode45 in Matlab. Fig. 2a shows the
X displacement over a period for varying amplitudes and a
phase difference of ϕ = π/2. It can be seen that for large
amplitudes the swimming direction is reversed. Obviously,
the reversal cannot be seen in the leading-order results which
are quadratic in ε and monotonic. Nevertheless, including the
next order term X (4) does show this behaviour and has an op-
timal amplitude. The optimal amplitude using the numerical
calculation is ε∗ = 1.65[rad] with a normalized displacement
of X = 0.079l and through the asymptotic approximation
ε∗ = 1.55[rad] with a displacement of X = 0.074l. For larger
amplitudes of ε > π, it is shown in Fig. 2a that there exists
another optimum with negative displacement that has even
larger absolute value. However, in these large amplitudes the
swimmer’s links will collide and thus, this result is regarded
as infeasible. Fig. 2b shows the displacement as a function
of the phase difference ϕ with an amplitude of ε = π/4. For
a phase difference of ϕ = {0, π} the displacement is zero
as expected from (15). The optimal phase that maximizes
the displacement X is ϕ∗ = 1.36[rad] for the numerical
calculation with a displacement of X = 0.034l, while the
asymptotic approximation gives an optimal phase of ϕ∗ =
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Fig. 3: Contour plot of net displacement X of the 3-link
swimmer as a function of amplitude ε and phase ϕ.

1.33 with displacement of X = 0.034l. Fig. 2c shows the
displacement for a given gait (ε = π/4 and ϕ = π/2) with
varying links’ length ratio η. Both the numeric simulation
and the fourth order approximation give a similar optimal
ratio η∗ = 0.34 for the given gait, with a displacement
of X = 0.033l. The leading order as well gives a close
approximation of the optimal ratio η∗ = 0.35, but slightly
misses the displacement, with X = 0.038l. Fig. 3 shows a
contour plot of the displacement X as a function of the
amplitude ε and phase difference ϕ for the 3-link swimmer
through numerical integration. The optimal combination of
amplitude and phase, marked by × on the plot, is at ε∗ = 1.74,
ϕ∗ = 1.01 with a displacement of X = 0.102l. (This optimum
cannot be captured by the asymptotic solution in (15) without
considering the O(ε6) term). The additional global optimum
on the right edge of Fig. 3 is in the range of large amplitudes
which are not feasible.

For the 5-link swimmer model, we performed simulations
under harmonic inputs θk(t) = Asin(ωt + kϕ) with identical
links of ai = 1, bi = 0.5 and li = 1.1. Fig. 4 shows the
contour plot of the displacement X of the 5-link swimmer as
a function of the amplitude A and phase difference ϕ. The
optimal combination of amplitude and phase, marked by ×,
is A∗ = 1.22[rad] and ϕ∗ = 0.87[rad] with a displacement of
X = 0.156l. Another maximum, with a greater displacement,
is marked by a circle. As before, this is not considered
since the amplitude is greater than π and collision between
the links will occur before the swimmer reaches this point.
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Fig. 4: Contour plot of net displacement d of the 5-link
swimmer as a function of amplitude A and phase ϕ.

Motion animations of the simulated swimmers appear in the
multimedia extension.

V. Experimental results

We now present experimental results that have been ob-
tained with untethered floating 3-link and 5-link swimming
robots. Prototypes of these robots and their dimensions are
shown in Figures 5a,5b. Their links were made of ellipse-
shaped flotation foams of thickness 1cm for the 3-link
swimmer and 2cm for the 5-link swimmer. The links were
connected by joints which are actuated by servo motors
(Hitec Multiplex HS-5685MH) that were mounted on top
of the floating links. A single battery (2-cell 7.4V Turnigy
2s 500mAh Lipo) for powering the motors and RF receiver
(orangeRx R615X) were mounted on top of the middle link.
Harmonic inputs for the joint angles as in (1) were fed
from MATLAB interface to CRIO-Labview system, and then
transmitted to the onboard RF receiver and servo motors, in
order to track coordinated reference trajectories. The robots
were located in a rectangular pool (length 401cm, width
151cm, height 18cm), which has been filled with water up
to a level of 6cm. Three spherical reflective markers have
been attached to each link, and the robots’ motion was
tracked by Optitrack system consisting of an array of eight
infrared cameras. The spatial location of each link has been
measured with sampling rate of 100Hz, and then processed
in Motive tracking software. The resulting position vectors
were smoothened by a moving average filter with 25-points
window in order to extract the trajectories of robot’s position

(a) (b)

Fig. 5: Robotic prototypes. (a) 3-link robotic swimmer (ai = 15, bi = 7, li = 17.5). (b) 5-link robotic swimmer.(ai = 10, bi = 7,
li = 12.5, all dimensions in cm).
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Fig. 6: Experimental results for 3-link swimmer: (a) x(t), (b) y(t), (c) β(t).

and joint angles.

Motion experiments were conducted for both 3-link and
5-link swimmers under several input parameters, and the
measured results have been compared to numerical simula-
tions under the same joint kinematics as extracted from the
measurements. A video file that appears in the multimedia
extension of this paper presents the experimental setup,
motion animations of numerical simulations, as well as
movies of representative swimming experiments. For the 3-
link swimmer, Figures 6a,6b,6c show time plots of the body
position x(t),y(t),β(t), respectively, during a single period,
under inputs as in (9) with ε = 0.78[rad] and ϕ = 0.25[rad].
The solid lines denote the experimental measurements, while
the dotted lines denote numerical simulations. It can be seen
that the motions of lateral translation y(t) and rotation β(t)
display reasonable agreement with numerical simulations,
whereas the forward motion x(t) is significantly overesti-
mated by the simulations. One obvious explanation to this
difference is the fact that the model accounts for a fully
submerged robot while in reality, only a small portion of
the ellipses is submerged and all masses of the motors,
batteries and receiver contribute to the robot’s inertia but not
to the added mass effect which generates propulsion. This
observation can be easily incorporated into the theoretical
model by introducing a mass reduction coefficient δ, which
is the ratio between the submerged part of the link’s mass
to its total mass. For our swimmer’s mass and buoyancy
parameters, this coefficient is estimated as δ = 0.05, and the
dashed line in Fig. 6a denotes the simulated motion while
considering this mass reduction, i.e. multiplying the added
mass terms in (5) by δ. It can be seen that this gives a
noticeable improvement in the quantitative agreement be-
tween experimental measurements and numerical simulations
of x(t).

Next, we conducted a series of experiments with inputs of
the form (9), where the amplitude was kept constant at ε =
0.78[rad] while the phase difference ϕ between the two joint
angles have been varied in 5 degree increments. Fig. 7 plots
the forward displacement X in a period as a function of the
phase difference ϕ. The circular markers denote experimental
measurements which were averaged over 3 periods, where the

error bars denote standard deviations. The solid line denotes
numerical simulations under the same inputs without mass
reduction, while the dashed line denotes simulation results
under mass reduction of δ = 0.05. It can be seen that the
experimental results corroborate the theoretical predictions
of an optimal phase difference at ϕ ≈ 1.3[rad] that achieves
maximal displacement. Moreover, adding the mass reduction
factor δ into the theoretical model improves the quanti-
tative agreement with experimental measurements. Similar
experiments have been conducted for the five-link swimmer.
Fig. 8 shows time plots of the body position x(t),y(t),β(t),
respectively, under inputs θk(t) = 0.48sin(0.5πt + kϕ)[rad]
for k = 1 . . .4 and phase difference ϕ = −π/4[rad]. Fig.
9 plots the net swimming distance d =

√
∆x2+∆y2 as a

function of the phase difference ϕ between consecutive joint
angles. One can see a good qualitative agreement between
experimental results and simulations of the theoretical model,
which both capture similar behaviour of x(t),y(t),β(t) during
a cycle, and also show an optimal phase difference of ϕ ≈
0.83[rad] that achieves maximal displacement. Nevertheless,
the quantitative agreement between theory and experiment
for this swimmer is weaker than that of the three-link
swimmer. Incorporating the effect of added mass reduction
does not result in significant improvements (shown in Fig.
8a only). This suggests that for the five-link swimmer, other
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Fig. 7: Experimental results. X vs ϕ for 3-link swimmer
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Fig. 8: Experimental results for 5-link swimmer: (a) x(t), (b) y(t), (c) β(t).

unmodelled effects are more dominant, as discussed next.

VI. Discussion

We now discuss the results and make some observations
regarding the comparison between the experiments and the
numerical simulations based on the theoretical model. It
is important to note that the theoretical model of “perfect
fluid” is highly simplistic and thus limited. It does not
account for many realistic effects that are obviously present
in the experimental prototypes, listed as follows. First, the
model does not account for drag forces generated due to
the fluid’s viscosity [12], [13], [14]. It also ignores the
effects of hydrodynamic interaction between the links [17],
[18], and of vortex shedding that enhances propulsion [15],
[16]. These effects have been previously modelled by other
works as mentioned above. Nevertheless, these more accurate
models are significantly more complicated, and result in
a major increase in computational resources and run-time
complexity, while symmetries and time-invariance of the
low-dimensional “perfect fluid” model are typically lost.
Second, the model assumes an unbounded fluid domain,
while reflected waves from the pool’s walls can have a
significant effect on the robot’s motion. This effect has been
strongly observed for the five-link swimmer, whose larger
total length (120cm) becomes comparable to the dimensions
of the pool. Third, as mentioned above, the experimental
swimmer prototype floats while only small portion of the
links is submerged in the fluid, whereas the theoretical
model assumes that the entire swimmer is submerged, and
thus ignores the effects of surface tension at the water-
air-swimmer interface. Additionally, the theoretical model
considers only planar horizontal (gravity-free) motion, while
the real swimmer can undergo off-plane motion. In some
experiments, the swimmer has displayed noticeable off-plane
rocking motion similar to a gravity-dominated pendulum.
These oscillations were particularly emphasized in cases
of large joint angles and “U-shaped” configurations of the
swimmer. This effect, combined with mechanical limitation
on joint angles due to inter-link collisions, did not enable
conducting experiments with large stroke amplitudes of the
joint angles for corroborating the theoretical predictions of

optimal amplitude. This task is left as a future challenge, that
requires improved mechanical design of the swimmer.

VII. Conclusions
In this paper, we have studied the inertia-dominated mo-

tion of multi-link swimmers under harmonic inputs of joint
angles. We utilized the “perfect fluid” model that accounts
for added mass effect and assumes ideal inviscid fluid, which
enables reduction to a time-invariant first-order dynamical
system. We conducted asymptotic analysis for the three-link
swimmer, which gives closed-form approximate expressions
for the swimmer’s displacement, that enable obtaining opti-
mal amplitude and phase shift for the joint angles, as well
as optimal ratio of links’ length. Next, we conducted motion
experiments with three-link and five-link floating swimmers,
and compared measurements from motion tracking system
to numerical simulations under the theoretical model, while
accounting for the reduction in added mass due to the swim-
mer’s buoyancy. Very good agreement has been achieved
for the three-link swimmer, while the results of the five-
link swimmer agree only qualitatively. We discussed possible
reasons for the discrepancies, mainly due to wall interactions
and other unmodelled effects. Future work will include
optimization with respect to energy efficiency as well as
incorporating additional effects such as viscous drag, vortex
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shedding and hydrodynamic interaction into the theoretical
models. It is also planned to experimentally investigate the
dependence of motion on the actuation frequency, in order
to test the model’s assumption of time-invariant dynamics.
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