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Abstract The wheeled three-link snake model is a well-

known example of an underactuated robotic system

whose motion can be kinematically controlled by

periodic changes of its internal shape, coupled with non-

holonomic constraints. A known problem of this model

is the existence of kinematic singularities at symmet-

ric configurations where the three constraints become

linearly dependent. Another critical assumption of this

model is that the constraints of zero lateral slippage al-

ways hold, which requires large friction at the ground

contact. This assumption breaks down when the inputs’

actuation frequency becomes too large, or when passing

through singular configurations where the constraint

forces grow unbounded. In this work, we extend the

kinematic model by allowing for wheels slippage when

the constraint forces reach an upper bound imposed by

Coulomb friction. Using numerical simulations, we an-

alyze the system’s hybrid dynamics governed by stick-

slip transitions at the three wheels. We study the influ-

ence of actuation frequency on evolution of stick-slip pe-

riodic solutions which induce reversal in direction of net

motion, and also show existence of optimal frequencies

that maximize the net displacement per cycle or mean

translational speed. In addition, we show that passing

through kinematic singularities is overcome by stick-slip

transitions which keep the constraint forces and body

velocity at finite bounded values. The analysis proves

that in some cases, simple kinematic models of underac-

tuated robotic locomotion should be augmented by the
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system’s hybrid dynamics which accounts for realistic

frictional bounds on contact forces.

1 Introduction

Kinematics and dynamics of mobile robotic locomo-

tion is commonly studied within the framework of me-

chanical systems with nonholonomic constraints [1,2].

The motion of such systems is described by a set of

generalized coordinates q ∈ IRn and governed by k

non-integrable constraints of the form fi(q, q̇) = 0 for

i = 1 . . . k, or a more specific matrix form W(q)q̇ = 0.

A classical example is the Chaplygin’s sleigh [3,4], which

contains a blade whose sliding motion is constrained to

a specific body-fixed direction in the plane. Other com-

mon examples of nonholonomic systems are wheeled toy

vehicles where the wheels’ axles are assumed to main-

tain zero lateral slip (no-skid constraints), such as the

snakeboard [5,6], roller racer [7,8] and more [9,10]. In

most of theoretical models of such locomotion systems,

it is assumed that the shape variables of the robot (e.g.

internal joint angles) are directly prescribed as a con-

trol input, and typically undergoing time-periodic tra-

jectories called gaits [11,12]. Nevertheless, there are few

models which account for mechanical actuation of con-

trolled internal torques or forces at the joints [13].

A key characteristic of locomotion systems is their

under-actuation. This means that the number of con-

trol inputs m is smaller than the number of degrees-of-

freedom n, leaving n−m passive degrees of freedom. As-

suming kinematic control of shape variables, if the num-

ber of nonholonomic constraints satisfies k = n−m, the

motion of the system is completely determined by the

inputs and the constraints, represented by a system of

first-order ordinary differential equations (ODE). Such
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systems are called kinematic systems, and their net mo-

tion under a periodic gait input depend only on geom-

etry and not on time-parametrization of the input. Ex-

amples of such systems are the kinematic snake model

[14] and truck-trailers systems [15,16]. In case where

there are fewer constraints, k < n − m, one also has

to account for the dynamics of the system in order to

determine its motion, which is no longer time-invariant,

and governed by second-order ODE system. Examples

of this case are the models of snakeboard [5], roller-racer

[7] and twistcar [13].

Another branch in the literature on robotic loco-

motion models are multi-link swimmers [17], which are

often also represented as kinematic control systems. For

micro-scale swimmers in Stokes flow where drag forces

are dominating, the nonholonomic constraints are in-

duced by balance of net forces and torques in quasistatic

motion [18]. For large inertia-driven swimmers in ”in-

viscid” potential flow, the constraints originate from

symmetries and momentum conservation laws [19,20].

Several works have studied geometric symmetries and

gait planning for such systems [21,22], as well as gait

optimization for maximizing various performance mea-

sures [23–25].

In mechanical control systems, the dynamics is com-

monly formulated using constrained Lagrange’s equa-

tions, which contain terms of generalized forces that

enforce the constraints [26]. For wheeled vehicles with

no-slip constraints, such forces are generated by con-

tact with the ground, and their magnitude is practically

limited by friction bounds. In spite of this, most of the

works in the literature assume ideal no-slip constraints

without limitations. One possible extension that ac-

counts for possible relaxation of the constraint is the

”slip-angle” model, which enables lateral slip and as-

sume a known relation between the constraint forces

and the wheels’ slip direction [27–30]. A slightly differ-

ent model assumes viscous dissipation forces, which are

linearly proportional to the slip velocity [31]. Both mod-

els result in smooth changes of slip velocity and con-

straint forces. On the other hand, the use of Coulomb’s

friction model induces nonsmooth transitions between

slip and no-slip states. This model has been used in few

works in order to study frictional stick-slip transitions

in nonholonomic models of wheeled robot locomotion

such as Chaplygin’s sleigh [32], and the snakeboard [33].

Some works have used those models of wheel slip-

page in order to study motion planning and control of

differentially driven wheeled mobile robots, for detect-

ing and overcoming slippage [34–37]. Importantly, any

model that incorporates wheel slippage turns the kine-

matic locomotion system into a dynamic one. The in-

fluence of actuation frequency on the system’s behavior
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Fig. 1: The wheeled three-link snake model: (a) Top

view (xy plane). (b) Side view.

and performance under periodic shape inputs has not

been studied in previous works.

Snake-robot models typically consist of a chain of

multiple rigid links connected by actuated joints. Such

models have been vastly used in the past decades for

describing the motion of snakes in nature, as well as

the motion control of bio-inspired snake robots [38]. A

key feature of terrestrial snake locomotion is exploiting

anisotropy of frictional resistance in snake-ground con-

tact in order to induce propulsion under periodic wave-

like shape changes. Therefore, chains of robotic trailers
with passive wheels have commonly been used in or-

der to demonstrate snake locomotion, where frictional

anisotropy is represented by no-skid nonholonomic con-

straints [39,40]. Our work focuses on the basic building

block of those robotic snake-like wheeled chains, which

is the model of wheeled three-link (kinematic) snake.

This model consists of three links connected by two con-

trolled joints and supported by three wheels, as shown

in Figure 1. This is a classical kinematic system whose

motion is determined by input of the two joint angles

φ1, φ2, combined with three nonholonomic constraints

of zero lateral slip at the wheels.

Several previous works have shown that the kine-

matic equations of the three-link kinematic snake have

singularity at symmetric configurations where φ1 = φ2,

for which the nonholonomic constraints become linearly

dependent and the robot’s body velocities may grow

unbounded. In the work [14], symmetric gaits for this

robot have been analyzed without accounting for the

singularity. Nevertheless, simple robotic experiments re-
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ported in [14] have indicated significant lateral slip-

page of the wheels near singular configurations, since

the ground contact forces could not maintain the con-

straints due to friction bounds. Few works have added

considerations of avoiding singularities for kinematic

three-link and multi-linked wheeled robots [40–42]. More

recent works have incorporated dynamic models for by-

passing singularities of the kinematic snake, such as

mechanically locking one joint at the singular config-

urations and adding gravity forces on a slope [43], or

replacing one actuated joint by a passive torsion spring

[44]. None of the works listed above have imposed fric-

tion bounds on the constraint force or studied stick-slip

transitions near singular configurations.

The goal of this work is to revisit the model of the

wheeled three-link kinematic snake robot and study its

singular configurations, combined with hybrid dynam-

ics under Coulomb’s friction bounds and stick-slip tran-

sitions. First, we formulate the constrained dynamics

of the system and show that constraint forces grow un-

bounded at singular configurations even for symmetric

gaits where body velocities remain finite. Then we for-

mulate the hybrid dynamics under transitions between

stick-slip states of the wheels’ contacts. Using numer-

ical simulations, we first study the influence of actu-

ation frequency of input on the robot’s motion under

a non-singular gait. We show that frictional stick-slip

transitions break the time invariance and result in non-

monotonic dependence on the frequency, that induces

reversal in the direction of the robot’s net motion. We

obtain optimal frequencies for maximizing either the

net displacement per cycle or the mean speed. Next,

we study the motion under symmetric gaits that cross

singular configurations, and show that slippage must

occur at any actuation frequency and that the hybrid

model ensures that constraint forces and body velocities

always remain finite and bounded. Finally, we study the

influence of gait’s amplitude and compare between sin-

gular and non-singular gaits. Our analysis proves that

the simple kinematic model should be augmented by

the system’s dynamics, and that Coulomb’s friction law

and stick-slip hybrid transitions resolve the system’s

kinematic singularity in a physically meaningful way.

2 Kinematic formulation and singularity

analysis

The model of the wheeled three-link snake robot is

shown in Figure 1. It has front-back symmetry, where

lengths of middle link and side links are 2h and 2l, re-

spectively. A nondimensional length ratio is defined as

η = h/l. Planar motion of the robot is described by

the generalized coordinates q = (x, y, θ, φ1, φ2)T . They

are divided into shape coordinates qs = (φ1, φ2)T , and

body coordinates qb = (x, y, θ)T , where x, y denote the

position of the center point r0 of the middle link, and θ

is its orientation angle. The shape coordinates, i.e. joint

angles φ1, φ2, are assumed to be directly actuated and

controlled, whereas the body motion evolves indirectly

and passively due to shape actuation. The mechanism

which connects between shape and body motion is the

nonholonomic constraints induced by assuming no lat-

eral slippage (skid) of the three wheels. Let ri denote

the position of the ith wheel’s axle, for i = {0, 1, 2}.
Their positions are given by

r0 =

(
x

y

)
, r1 = r0 + h

(
cos θ

sin θ

)
+ l

(
cos(θ − φ1)

sin(θ − φ1)

)
r2 = r0 − h

(
cos θ

sin θ

)
− l
(

cos(θ + φ2)

sin(θ + φ2)

)
.

(1)

Each wheel axle is constrained to move only along the

link’s longitudinal direction without slipping laterally.

The lateral directions of each wheel axle ui are given

by

u0 =

(
− sin θ

cos θ

)
, u1 =

(
− sin(θ − φ1)

cos(θ − φ1)

)
,

u2 =

(
− sin(θ + φ2)

cos(θ + φ2)

)
.

(2)

The no-slip constraints are ṙi · ui = 0. They can be

written in terms of vector q̇ of generalized velocities as

vi = ṙi · ui = wi(q) · q̇ = 0 for i = {0, 1, 2}. (3)

Grouping the three equations in (3), the no-slip non-

holonomic constraints are obtained in matrix form as:

W(q)q̇ = 0,

where W(q) = − sin θ cos θ 0 0 0

sin(φ1 − θ) cos(φ1 − θ) h cos(φ1) + l −l 0

− sin(φ2 + θ) cos(φ2 + θ) −h cos(φ2)− l 0 −l


(4)

The constraint matrix in (4) can be decomposed into

blocks related to body and shape velocities W = (Wb Ws),

which gives

Wb(q)q̇b + Wsq̇s = 0. (5)

Since (5) contains three scalar constraints and three

body velocities, it can be inverted in order to obtain

q̇b = −Wb(q)−1Wsq̇s. (6)
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Fig. 2: (a) Curves of singular configurations in (φ1, φ2)-plane; Two singular configurations for η = h/l = 1.5 and

φ1 = 65◦: (b) Symmetric φ2 = 65◦, and (c) Asymmetric φ2 = 194.5◦

The first-order nonlinear system in (6) is the kinematic

equation which governs the robot’s body motion qb(t)

for a given input of shape changes qs(t). For a periodic

input of shape changes (gait), one only needs to inte-

grate (6) over a single period, due to invariance of the

system’s constraints with respect to rigid-body trans-

formations (gauge symmetry, cf. [11,5]). Additionally,

the system (6) is time-invariant, hence the robot’s net

motion in a period depends only on the chosen trajec-

tory of qs(t) in the shapes’ space, and not on its time

rate.

A major problem in the kinematic control of the

three-link snake is the existence of singular configura-

tions. Mathematically, this phenomenon is manifested

by singularity of the constraint matrix Wb(q) in (6).

The singularity condition is simply vanishing of the de-

terminant of Wb, which is given by:

det(Wb) = h sin(φ2 − φ1) + l(sinφ2 − sinφ1) = 0. (7)

An obvious solution of (7) is φ1 = φ2, which is a sym-

metric configuration of the robot. However, there also

exists an additional curve of non-symmetric singular so-

lutions. A plot of the singular curves in (φ1, φ2) plane

is shown in Figure 2a, for several values of links’ length

ratio η = h/l. It can be seen that the line of symmetric

singular solution φ1 = φ2 always exists, whereas the ad-

ditional singular curves depend on the value of η, and

undergo a qualitative change between cases of η < 1

and η > 1. In the limiting case of η = 1, where all

robot’s links are equal, those curves reduce to φi = ±π
for i = 1 or i = 2. Such configurations, in which the

links are folded on each other, are generally not physi-

cal due to inter-collision between the links. Since most

of previous works focused on the case of equal links

η = 1, the non-symmetric singular configurations have

not been previously considered. Figures 2b-2c show il-

lustration of the two singular configurations of the robot

for φ1 = 65◦ and η = 1.5. The symmetric configuration

in which φ2 = φ1 appears in Figure 2b, while the non-

symmetric singular configuration where φ2 = 194.5◦

appears in Figure 2c. The geometric interpretation of

singular configurations is clear from both examples: the

lines of the three axles intersect at a common point.

This implies that when the joint angles are held fixed,

the robot is not immobilized and can move by rigidly

rotating about the intersection point.

When the robot’s shape qs approaches a singular

configuration, the kinematic equation (6) generally im-

plies that the body velocities q̇b grow unbounded. How-

ever, there are special cases in which q̇b can remain

finite and bounded while crossing a singular configu-

ration. This occurs in cases where Wsq̇s lies precisely

in the linear subspace spanned by the columns of the

(rank-deficient) singular matrix Wb(q) in (6). Using (4)

and (5) leads to the condition:

φ̇1 sinφ2 + φ̇2 sinφ1 = 0. (8)

In particular, for the symmetric singular configurations

φ1 = φ2, the condition (8) simply reduces to φ̇1 = −φ̇2.

Geometrically, this means that the shape trajectory in

(φ1, φ2) plane crosses the singularity line φ1 = φ2 pre-

cisely at a perpendicular direction.

In this work, we consider periodic gaits where the

joint angles qs(t) are given by harmonic functions as:

φ1(t) = α1 + β1 sin(ωt), φ2(t) = α2 + β2 cos(ωt). (9)

In order to demonstrate the different behavior while

crossing the singularity lines, two cases are considered

where α1 = α2 = 0 in both of them: a circular gait

where β1 = β2 = 0.3π, and an elliptic gait where
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Fig. 3: (a) Circular (solid) and elliptic (dashed) gait trajectories in (φ1, φ2)-plane. Time-plots of the norm of body

velocities ||q̇b(t)||: (b) For the elliptic gait. (c) For the circular gait.

β1 = 0.25π and β2 = 0.3π. The two gaits are shown

in Figure 3a in (φ1, φ2)-plane. It can be seen that the

circular gait satisfies the condition φ̇1 = −φ̇2 at the

singularity line φ1 = φ2 (dotted line), while this is not

satisfied by the elliptical gait. Figures 3b,3c show time

plots of the norm of body velocity ||q̇b(t)|| along a pe-

riod of both gaits, calculated according to (6) and (9)

for ω = 1 rad/s. (Linear and angular velocities are nor-

malized by lω and ω, respectively). It can be seen that

the body velocity grows unbounded upon crossing the

singularity line under the elliptical gait, but stays finite

and bounded under the circular gait. In the next sec-

tion, we show that even in this case where kinematic

singularity is overcome, the constraint forces may still

grow unbounded.

3 Dynamic analysis under ideal no-slip
constraints

We now formulate the dynamic equations of motion

and show how constraint forces can be computed. We

use the standard formulation of constrained Lagrange’s

equations [26], explained as follows. Consider a system

with generalized coordinates q ∈ IRn where n is the

number of degrees of freedom. The system is subject

to k nonholonomic constraints of the form W(q)q̇ = 0

where W ∈ IRk×n. The dynamic equations of motion

of the constrained system are given:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Fq + W(q)TΛ, (10)

where L = T − U is the system’s Lagrangian, T is the

total kinetic energy, U is the potential energy, Fq is the

vector of generalized forces and Λ ∈ IRk is the vector

of constraint forces (Lagrange multipliers). Since the

robot here moves in horizontal plane, our system is not

governed by any changes in potential energy and U can

thus be ignored. The total kinetic energy for planar

motion of N rigid bodies can be obtained as

T =
1

2

N∑
i=1

(
mi(ṙi · ṙi) + Iiω

2
i

)
, (11)

where mi is the mass of link i, ṙi is its center-of-mass

velocity, Ii is its moment of inertia, and ωi is its angu-

lar velocity. We assume for convenience that all robot’s

links are uniform rods such that I0 = mih
2/3 and

I1 = I2 = mil
2/3. Moreover, all rods have equal diame-

ter and density, so that the links’ masses are related as

m0 = ηm1 = ηm2. The links’ center-of-mass positions

are given in (1), and their angular velocities are given

by

ω0 = θ̇, ω1 = θ̇ − φ̇1, ω2 = θ̇ + φ̇2. (12)

Using all the assumptions above, the equations of mo-

tion can be obtained using (10) and (11), and can be

written in a standard matrix form as

M(q)q̈ + B(q, q̇) = Eτ + W(q)TΛ

where E =

(
0 0 0 1 0

0 0 0 0 1

)T
, Λ = (λ0, λ1, λ2)T ,

(13)

and τ = (τ1, τ2)T is the vector of actuation torques

at the joints. The structure of the matrix E on the

right hand side of (13) indicates the under-actuation of

the system, since the shape coordinates qs are directly

actuated whereas the body coordinates qb are not. On

the left hand side of (13), explicit expressions of inertia

matrix M(q) and vector of velocity-dependent terms

B(q, q̇) are given in Table 1.

The matrices M(q),B(q, q̇),W(q) in (13) can be

decomposed into blocks corresponding to body and shape

coordinates qb,qs as follows:[
Mbb Mbs

MT
bs Mss

](
q̈b
q̈s

)
+

(
Bb

Bs

)
=

(
0

τ

)
+

(
WT

b

WT
s

)
Λ. (14)
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M(q) = m1



η + 2 0 l(s1 + s2) −ls1 ls2

0 η + 2 l(c1 − c2) −lc1 −lc2
l(s1+s2) l(c1−c2) l2

3 (6η(cosφ1+cosφ2)+η
3+6η2+8) − l2

3 (3η cosφ1+4) l2

3 (3η cosφ2+4)

−ls1 −lc1 − l2

3 (3η cosφ1 + 4) 4
3 l

2 0

ls2 −lc2 l2

3 (3η cosφ2 + 4) 0 4
3 l

2



B(q, q̇) = m1l



θ̇
2
(c2 − c1) − φ̇

2
1c1 + φ̇

2
2c2 + 2θ̇(φ̇1c1 + φ̇2c2)

θ̇
2
(s1 + s2) + φ̇

2
1s1 + φ̇

2
2s2 + 2θ̇(φ̇2s2 − φ̇1s1)

−lη(2θ̇(φ̇1s1 + φ̇2s2) + φ̇
2
2s2 − φ̇

2
1s1)

lηθ̇
2
s1

lηθ̇
2
s2


where c1 = cos(φ1 − θ), s1 = sin(φ1 − θ), c2 = cos(φ2 + θ), s2 = sin(φ2 + θ).

Table 1: Expressions of M(q) and B(q, q̇) in Eq. (13)

In the case of a mechanical control, the joint torque

vector τ (t) is prescribed while the body and shape

variables qb(t),qs(t) are dynamically evolving. On the

other hand, in the case of kinematic control considered

here, the shape variables qs(t) are prescribed while the

joint torques τ (t) are determined and the body vari-

ables qb(t) are dynamically evolving. In both cases, ad-

ditional information is required for obtaining the un-

known constraint forces Λ in (13). This information is

obtained by differentiation of the nonholonomic con-

straint (4) with respect to time. Using that Ẇs = 0,

this gives

W(q)q̈+Ẇ(q, q̇)q̇ = Wbq̈b+Wsq̈s+Ẇbq̇b = 0. (15)

Combining equations (14) and (15) gives a linear system

in the unknowns (q̈b, τ ,Λ) for a prescribed shape input

given by a function qs(t) with known derivatives, as:Mbb 0 −WT
b

MT
bs −I2 −WT

s

Wb 0 0


︸ ︷︷ ︸

A8×8

 q̈b
τ

Λ

 =

 −Mbsq̈s −Bb

−Mssq̈s −Bs

−Wsq̈s − Ẇbq̇b

 ,

(16)

where I2 is a 2 × 2 identity matrix and 0 denotes zero

blocks of compatible dimensions. The 8 × 8 matrix A

in (16) has to be inverted in order to find the dynamic

solution for the unknowns (q̈b, τ ,Λ). Direct (yet a bit

tedious) calculation shows that the determinant of A

satisfies

det(A)=det(Wb)
2 =[h sin(φ2−φ1)+l(sinφ2−sinφ1)]2.

(17)

This implies that the dynamic solution of (16) under

kinematic control reaches a singularity whenever the

kinematic system is singular. As an example, we re-

visit the case of a circular gait (9) where β1 = β2 =

0.3π and ω = 1rad/s. This gait has already been con-

sidered in the kinematic analysis in the previous sec-

tion, and it has been shown that it overcomes the kine-

matic singularity while maintaining bounded body ve-

locity. We now substitute qs(t) and its derivatives into

the dynamic equation (16). Physical parameters of the

robot are chosen as l = h = 0.1m and m0 = m1 =

m2 = 0.17Kg. Initial body position is chosen as qb(0) =

0 while initial body velocities q̇b(0) are obtained by

substituting the given qs(0), q̇s(0) into the nonholo-

nomic constraints (4). The constraint forces λ0, λ1, λ2
and the actuation torques τ1, τ2 are plotted in Figures

4a and 4b as a function of time, zoomed in around

t = 0.7854 when the singular configuration φ1 = φ2
is crossed. It can be seen that these forces and torques

both grow unbounded near the singular configurations.

This is in spite of the fact that the body velocities re-

main bounded (see Figure 3c) since the gait satisfies

the relation (8). Thus, it is concluded that one can over-

come the kinematic singularity at velocity level, but not

the dynamic singularity at force and torque level.

Next, we consider dynamic simulation for a shifted

circular gait that does not cross any singular configu-

ration. This gait is obtained by choosing α2 = −α1 =

0.2π and β1 = β2 = 0.1π. The gait is plotted in Fig-

ure 5a in (φ1, φ2)-plane, and one can see that it does

not cross the singularity line φ1 = φ2 (dashed). Finding

the motion of the robot can be done by integrating the

kinematic equation (6). Figure 5b shows the trajectory

of the robot’s centerpoint r0(t) during 7 periods of the

gait. Animation movie of the simulated robot’s motion

appears in the supplementary information. The middle

link’s center makes a net displacement of ∆d = 0.52l in

a period. Nevertheless, it can be seen that the net rota-

tion of the robot in a cycle cancels out, so that the net
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a period. Dash-dotted horizontal lines are friction bounds ±µiNi discussed in Section 4.

motion is of pure translation. This is due to symmetry

of the gait with respect to the skew line φ1 = −φ2. The

constraint forces λi(t) under this gait can be computed

using Eq. (16), and the results are shown in Figure 5c

for actuation frequency of ω = 2rad/s. It can be seen

that the constraint forces remain bounded. However,

using dimensional analysis of the dynamic equations, it

is proven in Appendix A that the constraint forces λi(t)

scale as ω2 with the actuation frequency. Physically,

the constraint forces are limited in practice by friction

bounds. Therefore, increasing the actuation frequency

ω beyond some critical value causes λi(t) to reach their

upper bounds. This, in turn, results in evolution of slip-

page, as studied in the next section.

4 Hybrid dynamics under friction bounds and

stick-slip transitions

We now formulate the system’s hybrid dynamics which

accounts for friction bounds and stick-slip transitions.

First, consider the case where the no-slip constraint (3)

at the ith wheel axle is satisfied. The constraint force

λi, which is a tangential force applied by the ground

contact, must satisfy Coulomb’s dry friction inequality:

|λi| ≤ µiNi , vi = wi · q̇ = 0, (18)

where µi is the coefficient of Coulomb’s friction of the

ith wheel with the ground and Ni is the normal re-

action force at the wheel’s axle. When the magnitude

of λi reaches the bound in (18), lateral slip of the ith

wheel begins to evolve. In such case, the magnitude of

the corresponding constraint force stays at the maximal
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bound and opposes the slip direction:

λi = −µiNisgn(vi) where vi = wi · q̇ 6= 0. (19)

For simplicity of the analysis, we do not distinguish be-

tween static and kinetic friction coefficients throughout

this work. Another simplifying assumption is that the

normal reaction forces at the wheels are constant, and

their values are Ni = mig for {0, 1, 2}, where g is the

gravitational acceleration. This can be justified if each

wheel axle is located at the middle of the link, as shown

in the side view in Figure 1b. Moreover, it is also as-

sumed that the center-of-mass of each link is located

very low above the ground ∆z � l, so that its accelera-

tion has negligible contribution to the normal reaction

force.

The stick-slip states described above lead to 23 = 8

possible ”modes” – combinations of the three wheels’

stick-slip states. The dynamic equations of each mode

is governed by a different set of equations, described

as follows. First, the constrained Lagrange equations

(14) still hold, which gives 5 scalar equations. However,

the equation (15) of the time-derivative of the no-slip

constraints should be replaced by three equations which

depend on the slip state of each wheel, given as:wi(q) · q̈ + ẇi(q, q̇) · q̇ = 0 wheel i is not slipping

λi = −µiNisgn(wi(q) · q̇) wheel i is slipping

(20)

for i = 0, 1, 2. Combining equations (20) with (14) gives

a linear systems in the unknowns (q̈b, τ ,Λ) for a pre-

scribed shape input qs(t), similar to equation (16).

Singularity of the hybrid dynamic equations should

also be examined by constructing the matrix of the

linear system which governs the dynamics under each

mode of slip states and checking whether its determi-

nant can cross zero. The detailed derivation of this sin-

gularity analysis appears in Appendix B. In summary,

under the mode which includes slippage of wheel 0 only,

the dynamics is singular for joint angles that satisfy

φ1+φ2 = ±π or for φ1, φ2 = ±π. The latter case is non-

physical since it involves inter-collision between links.

Under the mode which includes slippage of wheel 1 or 2

only, the dynamics is singular only if the links lengths

are equal, η = 1, for joint angles that satisfy φ1 = ±π
or φ2 = ±π. All other modes that involve slippage in

two or more wheels turn out to be always non-singular.

The transitions between different modes of the hy-

brid dynamics are described as follows. A non-slipping

wheel begins to slip whenever its constraint forces reaches

its frictional bound, |λi| = µimig. When the slip veloc-

ity of a slipping wheel vanishes wi(q) · q̇ = 0, the wheel

may switch back to no-slip state, provided that the con-

straint force at the initial instant right after switching

satisfies its bound |λi| ≤ µimig. Otherwise, the wheel’s

slip velocity reverses its sign.

5 Numerical analysis of the kinematic snake’s

hybrid dynamics

In this section we present numerical simulations of the

robot under hybrid stick-slip transitions. The simula-

tions have been conducted using ode45 procedure of

MATLAB for adaptive-step integration, with event

function for detection of mode transitions. Physical pa-

rameters are chosen as l = h = 0.1m and m0 = m1 =

m2 = 0.17Kg, and friction coefficients of µ0 = µ1 =

µ2 = 0.2.

5.1 Analysis of the shifted circle gait

We revisit the gait of shifted circle which has been

analyzed in Section 3 under ideal no-slip constraints.

The gait, which is plotted in Figure 5a, is defined by

equation (9) with α2 = −α1 = 0.2π and β1 = β2 =

0.1π. The constraint forces λi(t) under actuation fre-

quency of ω = 2rad/s were plotted in Figure 5c. It

can be seen that the no-slip constraints can hold since

all forces λi(t) lie within the friction limits ±µimig,

denoted as the dash-dotted horizontal lines. However,

since the constraint forces λi scale as ω2, increasing the

actuation frequency in (9) will result in evolution of

stick-slip state transitions. Specifically, for ω > 2.7 rad/s,

the constraint force λ0(t) of the middle link’s wheel

reaches its friction bound and the wheel begins to slip.

As an example, we simulate the robot’s hybrid dynam-

ics for ω = 3.6 rad/s. Time plots of the constraint forces

λi(t) and of the slip velocity v0(t) = w0 · q̇ appear in

Figures 6a and 6b, respectively. It can be seen that the

central wheel 0 undergoes transitions of stick↔slip and

slip reversal whereas the side wheels 1,2 do not slip

at all. Animation movie of the simulated robot’s mo-

tion appears in the supplementary information, where

the blinking red arrow denotes times and direction of

wheel slippage. One can notice the slight curvature of

the robot’s motion trajectory. The middle link’s center

makes a net displacement of ∆d = 0.54l, while the link

undergoes a net rotation of ∆θ = 0.0273rad in a period.

The reason for this rotation is the violation of symme-

try which is induced by slippage, as can clearly be seen

in slip velocity v0(t) which is not symmetric about zero

and has nonzero mean. (Same holds for the constraint

forces λi(t), compare Figures 5c and 6a). The approx-
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Fig. 7: Time plots of simulation results for the shifted circle gait with ω = 10rad/s, constraint forces λi(t) and

slip velocities vi(t).

imate discrete radius of curvature of the trajectory is

ρ = ∆d/∆θ = 19.6l.

Next, we simulate the robot’s hybrid dynamics for

a higher frequency of ω = 10 rad/s. Time plots of the

constraint forces λi(t) and slip velocities vi(t) appear

in Figure 7. Importantly, since the simulation assumes

initial conditions of zero slip velocities, the solution in-

volves a transient phase followed by asymptotic conver-

gence to periodic motion. In this simulation, the solu-

tion converges rapidly to periodic motion after approx-

imately three periods. The middle link’s center makes

a net displacement of ∆d = 0.37l per period, while the

link undergoes a net rotation of ∆θ = 0.0161rad. It can

be seen in the time plots that the periodic solution in-

volves stick-slip transitions of the side wheels 1 and 2

while the central wheel 0 undergoes slip reversal tran-

sitions only. Any contact transition in one wheel may

induce discontinuity and non-smoothness in the con-

straint forces and slip velocity of other wheels. Figure

8 shows the trajectory of the robot’s centerpoint r0(t)

during several periods of the gait. Animation movie of

the simulated robot’s motion appears in the supplemen-

 

r0 

 𝐞̅0  

 

Fig. 8: Trajectory of the robot’s center r0(t) (dotted

curve) under the shifted circle gait for ω = 10rad/s.

Positions at integer period times are marked by ’×’.

Arrows denote the vectors ∆r0, ē0.
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tary information, where the colored blinking arrows de-

note times and direction of slippage at each wheel. Re-

markably, one can see that the direction of net motion is

reversed. That is, the robot moves to the left whereas

in the lower frequencies (ω = 2, 3.6) it moved to the

right, for exactly the same gait, (see Figure 5b and sup-

plementary movies). This frequency-dependent effect is

further examined below.

We now study the influence of varying the actua-

tion frequency ω of the input on the gait’s performance.

We conduct numerical simulations while the frequency

varies within the range 2 ≤ ω ≤ 10rad/s. At each fre-

quency, different quantities of the periodic solution are

calculated after passing the transient phase and conver-

gence to periodic motion. Figure 9a plots the percentage

of slipping time of each wheel in a period, as a function

of frequency. It can be seen that there is no slippage for

ω < 2.7rad/s, and that for ω > 9.4rad/s all wheels are

slipping. Figures 9b and 9c plot the net displacement

per period ∆d and the mean speed v̄ = ∆dω/2π, re-

spectively1. Remarkably, one can see that the changes

in slippage induce a non-monotonic dependence of both

net displacement and mean speed on the frequency.

In particular, there exist globally (locally) optimal fre-

quencies for maximizing the net displacement (speed).

Figure 9d plots the normalized curvature κ = l∆θ/∆d

as a function of frequency. It can be seen that for the

range of no-slip gaits ω < 2.7, the curvature is zero

since the gaits have zero net rotation. Moreover, for

ω = 6.28, the curvature of the trajectory is maximized.

In order to study the effect of reversal in direction

of net motion, we define the projected displacement dp
as the projection of the net displacement vector ∆r0
on the mean direction ē0 of the central link across a

period, and the displacement angle γ is defined as the

relative angle between those two vectors (see Figure 8).

These two definitions are formally given as

dp = ∆r0 · ē0 and γ = cos−1

(
∆r0 · ē0

|∆r0|

)
, where

ē0 =

(
cos θ̄

sin θ̄

)
, θ̄ =

1

tp

∫ t0+tp

t0

θ(t)dt, and tp =
2π

ω
.

(21)

Figures 9e and 9f plot dp/l and γ, respectively, as a

function of the actuation frequency ω. One can see that

the reversal in direction of net displacement occurs at

the frequency of ω ≈ 6.6 rad/s, slightly beyond the

1 Note that for gaits with nonzero net rotation, the net dis-
placement ∆d actually depends on the choice of the initial
time (phase) of the gait in (9). Nevertheless, for small rota-
tions this dependence has negligible effect, and thus it is not
considered here for simplicity.

point where the central wheel slips during the entire pe-

riod (Figure 9a). Finally, we note that the small gaps in

the curves at all plots for ω > 9.5 are due to numerical

problems encountered by the event detection function

of Matlab’s ode45 solver for specific frequencies, under

which two or more different transition events occur at

very close times.

5.2 Analysis of a singular elliptic gait

We now conduct numerical analysis of the robot’s hy-

brid dynamics under an elliptic gait that passes through

singular configurations. The gait is given by (9) with

α1 = α2 = 0, β1 = 0.25π and β2 = 0.3π, and its tra-

jectory in (φ1, φ2)-plane is plotted in Figure 3a (dahsed

curve). As an example, Figures 10a-c show plots of the

constraint forces λi(t) and slip velocities vi(t) along a

period, under frequency of ω = 4.8rad/s. A single pe-

riod is shown, after convergence to a periodic solution

(after six periods). Times where the joint angles pass

singular configurations φ1 = φ2 are marked by dot-

ted vertical lines. It can be seen that Coulomb friction

bounds and stick-slip transitions ensure that the con-

straint forces are finite and bounded even at configu-

rations of kinematic singularity. The net displacement

of the robot in a period is ∆d = 4.6l. Nevertheless, the

net rotation is zero, so that the robot’s average mo-

tion is along a straight line. This is due to symmetry of

the joint angle’s motion about zero, which induces con-

straint forces and slip velocities which are also symmet-

ric about zero. Figure 10d shows the trajectory of the

robot’s centerpoint r0(t) during several periods of the

gait. It can be seen that the robot moves in opposite di-

rection (to the left) compared to the shifted circle gaits

at low frequencies (Figure 5b). This is in spite of the

fact that the two gait trajectories have the same sense

of anti-clockwise motion in the plane of joint angles

(Figures 3a and 5a). Animation movie of the simulated

robot’s motion appears in the supplementary informa-

tion, where the colored blinking arrows denote times

and direction of slippage at each wheel.

Next, we conduct numerical simulations while the

frequency varies within the range 3 ≤ ω ≤ 5.2rad/s.

Figure 11a plots the percentage of slipping time of each

wheel in a period, as a function of frequency. It can

be seen that for any frequency, at least one wheel is

slipping during the period due to the crossing of sin-

gular configurations. Figures 11b and 11c plot the net

displacement per period ∆d and the mean speed v̄, re-

spectively. It can be seen that the net displacement is

maximized at an optimal frequency, whereas the mean

speed grows monotonically with frequency. No reversal

in net direction of motion has been observed for this
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Fig. 10: (a)-(c): Time plots of simulation results for the symmetric ellipse gait with ω = 4.8rad/s, constraint forces

λi(t) and slip velocities vi(t). (d) Trajectory of the robot’s center r0(t) (dotted curve), positions at integer period

times are marked by ’×’.
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gait (dp < 0 for all ω, plot not shown). Again, the gaps

in the plots denote frequencies where the simulation

becomes numerically sensitive and fails due to coinci-

dence of two different events. Note that this sensitivity

becomes much more severe under the symmetric cir-

cle gait, and thus we chose not to use it as a dynamic

simulation example in this study.

5.3 Influence of gaits’ amplitude

We now study the influence of the input’s amplitude

and compare between the non-singular shifted circle

gait (Figure 5a) and the symmetric ellipse gait (Figure

3a, dashed). Both gaits are given by Eq. (9). The shifted

circle gait has α2 = −α1 = 0.45π and β1 = β2 = β,

whereas the symmetric ellipse gait has α1 = α2 = 0 and

β2 = 1.2β1 = β. Note that the shift of the circle’s center

has been increased to 0.45π. This enables examination

of gait’s amplitudes up to β = 0.5π without crossing the

singularity line φ1 = φ2. On the other hand, the sym-

metric ellipse gait crosses singularity for any amplitude.

Numerical simulations under the two gaits have been

conducted for amplitude range of 0 < β ≤ 0.5π rad, for

frequency of ω = 0.3rad/s. This frequency is sufficiently

low, so that motion under the non-singular shifted cir-

cle gait does not include slippage for all values of β. On

the other hand, motion under the ellipse gait always

involves slippage during a period. Figure 12a plots the

percentage of slipping time of each wheel in a period, as

a function of the amplitude β. It can be seen that only

the middle wheel 0 is slipping. For low amplitude, where

the entire gait trajectory is close to the singularity at

origin φ1 = φ2 = 0, the wheel slips during 100% of the

period, and the slippage time percentage then decreases

when the amplitude is increased. Figure 12b shows a

log-log plot of the net displacements per period ∆d (af-

ter transient time and convergence to periodic motion)

under both gaits, as a function of the amplitude β. It

can be seen that the elliptic gait achieves significantly

larger net displacement for amplitudes up to ∼ 1.2rad,

above which the shifted circle gait achieves larger net

displacements. This might be explained by the large

body velocities which are achieved just before reaching

friction limits and slippage. In addition, it can be seen

that for the shifted circle gait, the net displacements in-

creases as β2, whereas for the singular gait ∆d decreases

with β and does not seem to obey any straightforward

power law. The explanation for this difference is that

under the non-singular circle gait, the no-slip dynam-

ics is regular and smooth, thus for small amplitudes ∆d

can be approximated using asymptotic expansion in the

amplitude β, as done in previous works, cf. [45,13]. On

the other hand, the dynamics under the singular ellipse

gait involves non-smooth hybrid transitions, and thus it

is not amenable to similar asymptotic analysis. Finally,

we note that no reversal in the net direction of motion

has been observed while varying the gaits’ amplitudes.

6 Conclusion

In this paper, we revisited the kinematic model of the

wheeled three-link snake and studied its singularities

where the nonoholonomic constraints become linearly

dependent. We have formulated the model’s dynamics

and shown that constraint forces and actuation torques

grow unbounded upon reaching singular configurations.

We have incorporated hybrid dynamics of stick-slip tran-

sitions under Coulomb’s friction law, and conducted

numerical simulations in order to study the influence

of actuation frequency under harmonic inputs. For the

shifted circle gait which does not pass through sin-

gular configurations, there exists a critical frequency

above which wheel slippage begins to evolve and the

motion rapidly converges to periodic solution. The net

displacement per period and mean speed both display

non-monotonic dependence on the actuation frequency,

having local and/or global extremum points. Addition-

ally, the direction of the robot’s net motion reverses its

sense with varying frequency. For a gait of symmetric

ellipse that passes through singularity, stick-slip transi-

tions occur for any actuation frequency, while the con-

straint forces remain finite and bounded. Finally, we

studied the influence of the gaits’ amplitude and com-

pared between a “kinematic gait” of shifted circle with-

out slippage and a symmetric ellipse gait which involves

stick-slip transitions. The results show how singularity

is resolved by the hybrid model in a physically mean-

ingful way.

We now briefly discuss some limitations of our work

and sketch possible directions for future extension of

the research. First, in terms of mathematical analysis

of our model, one can further study the orbital sta-

bility of periodic solutions using hybrid Poincaré map

analysis [46,47]. Additionally, one can apply asymp-

totic expansion in order to find closed-form approx-

imation of net displacements under kinematic (non-

singular) gaits and conduct parametric optimization

as in [45,48]. Another open problem is investigating

the behavior of the system near kinematic singular-

ities under mechanical input of joint torques rather

than torques angle. Our numerical simulation exam-

ple that appears in Appendix C shows that a singular

configuration is reached without unbounded growth of

body velocities and constraint forces. This observation

is also supported by recent models of mixed kinematic-

dynamic variants of the three-wheel snake [43], [44].
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Second, our friction model is simplified since it as-

sumes that the normal forces Ni are constant. This

holds only when the height of the center of mass is neg-

ligible ∆z � l, see Figure 1b. Relaxing this assumption,

the normal forces become coupled to the center-of-mass

accelerations. This coupling is complicated since it in-

volves 3D rotational dynamics of the robot. A third

possible extension is comparison with smooth models

of slippage and friction such as the ”slip-angle” model

[27–30].

As mentioned above, an evident limitation of our

numerical analysis is its sensitivity of the chosen inte-

gration scheme which causes failure in particular cases

where different events occur at very close times (see

small gaps in the plots in Figures 11b, 11c, and 9a). Us-

ing alternative integration schemes for stiff and piecewise-

smooth systems [49–51] is another open challenge. Fi-

nally, in a near future work we plan to experimentally

validate our friction model and its theoretical analysis

via motion measurements of controlled robotic proto-

types of the three-wheel snake.
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Appendix A - dimensional analysis of the dy-

namics and scaling with actuation frequency

Consider the constrained dynamical system in (14), com-

bined with the time-derivative of the constraints in (15).

The body acceleration can be obtained from (14) as

q̈b = M−1
bb (WT

b Λ−Mbsq̈s −Bb). (22)

Substituting (22) into (15), an explicit expression for

the vector Λ of constraint forces is obtained as:

Λ =
(
WbM

−1
bb WT

b

)−1 (
WbM

−1
bb (Mbsq̈s + Bb)

−Wsq̈s − Ẇbq̇b

) (23)

Next, consider a periodic gait input qb(t) of the form

(9), with a variable actuation frequency ω. The shape
velocity and acceleration vectors thus scale as q̇s ∼ ω

and q̈s ∼ ω2. Assuming that the gait does not cross

any singularity det(Wb) 6= 0, the kinematic relation (6)

implies that the body velocity scales as q̇b ∼ ω, and (15)

implies that q̈b ∼ ω2. Finally, the velocity-dependent

vector Bb(q, q̇) and matrices Ẇb,Ẇs are quadratic in

the velocities q̇, and thus scale as ω2. Therefore, (23)

implies that the vector Λ of constraint forces scales as

ω2.

Appendix B - singularity analysis of the hybrid

dynamics

We now analyze the conditions for singularity in the dy-

namics of all possible combinations of stick-slip states.

The dynamic equations of motion are given in (14),

which gives 5 scalar equations. These equations are aug-

mented by (20), giving rise to a 8 × 8 linear system

of the form Az = b where the vector of unknowns is
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Fig. 13: Time plots of simulation results under torque input: (a) Joint angles φi(t). (b) Joint velocities ±φ̇i(t). (c)

Norm of velocity ||q̇(t)||.

z = (q̈b, τ ,Λ). This can be further simplified by direct

substitution of the constraint force λi for each slipping

wheel from (20), and eliminating λi from the vector

z. This reduces the dimension of the linear system to

8 − ns where ns is the number of slipping wheels. We

then calculate the determinant D of the linear system’s

(8−ns)×(8−ns) matrix and analyze the conditions for

D = 0, which is a singularity of the dynamics. In the

following, we repeat this process for all possible combi-

nations of stick-slip states, while disregarding symme-

tries between the two side links i = 1, 2. We use the

abbreviations ci = sinφi, si = cosφi for i = 1, 2. First,

consider the case of only wheel 1 slipping. The deter-

minant D is obtained as:

D = m1l
2

3
(3η − 6s1s2 − 2c22 + 2η3c22 + 6ηc1 + 12ηc2

+6η2 + η3 + 6η2c2 − 6ηc1c22 − 6ηc2s1s2 + 8) .

It can be shown that the minimal value of D is zero,

which is attained only for η = 1 and φ2 = ±π. These

values of joint angle are nonphysical, due to collision

between links and coincidence of wheels 0 and 2.

Second, consider the case of only wheel 0 slipping.

The determinant D is obtained as:

D = m1l
2

3
(6η + 2 cos(2φ1 + 2φ2) + 12 cos(φ1 + φ2)

+3η2 cos(φ1 + 2φ2) + 3η2 cos(2φ1 + φ2) + 6η2 cos(2φ1)

+6η2 cos(2φ2) + 3η3 cos(2φ1) + 3η3 cos(2φ2)

+6η cos(φ1 + φ2) + η3 cos(2φ1 + 2φ2) + 18η cos(φ1)

+18η cos(φ2) + 12η2 + 5η3 + 6η cos(φ1 + 2φ2)

+6η cos(2φ1 + φ2) + 9η2 cos(φ1) + 9η2 cos(φ2) + 10)

Setting D = 0, it can be shown that singularity occurs

when φ1 + φ2 = ±π or when φ1, φ2 = ±π.

Next, consider the case where wheels 1 and 2 are

both slipping. The determinant D is obtained as:

D =
m2

1l
2

3
(8η − 6s1s2 + 3c21 + 3c22 + 12ηc1 + 12ηc2

+12η2 + 8η3 + η4 + 6η2c1 + 6η2c2 + 10) .

The minimal value of Dmin =
4m2

1l
2

3 > 0 is obtained in

the nonphysical case of η = 0, for φ1 = φ2 = π/2.

Now consider the case where wheels 0 and 1 are both

slipping. The determinant D is obtained as:

D =
m2

1l
2

6
(28η + 3 cos(2φ1 + 2φ2) + 24 cos(φ1 + φ2)

+6η2 cos(φ1 + 2φ2) + 12η2 cos(2φ2) + 12η3 cos(2φ2)

+3η4 cos(2φ2) + 12η cos(φ1 + φ2) + 36η cos(φ1)

+48η cos(φ2) + 42η2 + 28η3 + 5η4 + 12η cos(φ1 + 2φ2)

+18η2 cos(φ1) + 48η2 cos(φ2) + 12η3 cos(φ2) + 29) .

The minimal value of Dmin =
4m2

1l
2

3 is obtained in the

nonphysical case of η = 0, for φ1 + φ2 = π.

Finally, consider the case where all three wheels are

slipping. The determinant D is obtained as:

D =
m3

1l
2

3
(η + 2) (8η + 6 cos(φ1 + φ2) + 12ηc1 + 12ηc2 + 12η2

+8η3 + η4 + 6η2c1 + 6η2c2 + 10) .

The minimal value of Dmin =
8m3

1l
2

3 is obtained in the

nonphysical case of η = 0, for φ1 + φ2 = π.

Appendix C - dynamics under torque input near

singularity

Consider the three-wheel snake robot as a constrained

nonholonomic mechanical system where the torques τ (t)

are the controlled input while the shape variables qs are

evolving dynamically. The system’e equations of mo-

tion (14) and (15) give rise to a 8 × 8 linear system
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of the form Az = b where the vector of unknowns is

z = (q̈b, q̈s,Λ). The determinant of this system can be

obtained as:

D = 1
9
m1l6η2 (16η − 2 cos(2φ1 − 2φ2) + 3η2

−2η cos(2φ1) − 2η cos(2φ2) + 14) .

It can be shown that the minimal value of D is obtained

for φ1 = φ2 = 0 as

Dmin =
1

3
m1l

6η2(η + 2)2 > 0.

This implies that the dynamical system is never singu-

lar, so that (q̈b, q̈s,Λ) are always finite and bounded.

Nevertheless, if the system is driven into a configura-

tion of kinematic singularity where det(Wb) = 0, the

body velocity qb may still grow unbounded according

to (6).

We now examine this case in a numerical simulation

under torque input. Physical parameters of the robot

are chosen as l = h = 0.1m and m0 = m1 = m2 =

0.17Kg. Initial conditions are chosen as qb(0) = 0,

φ1(0) = −φ2(0) = 0.25π and q̇(0) = 0. The joint

torques are constant: τ1 = τ2 = 0.05 N ·mm. That is,

the torques drive the system towards a singular config-

uration where φ1 = φ2. Simulation results of the joint

angles φi(t) and their velocities ±φ̇i(t) are plotted in

Figures 13a and 13b, respectively. It can be seen that

the system reaches a configuration of kinematic singu-

larity φ1 = φ2 at time ts ≈ 0.49s, marked as dotted

vertical line. Interestingly, at the same time the joints’

angular velocities are driven to satisfy φ̇1 = −φ̇2, which

is precisely the condition given in (8) for bypassing the

kinematic singularity. Figure 13c shows a time plot of

the velocity norm ||q̇(t)||, indicating that, indeed, it re-

mains finite and bounded. That is, the system is driven

passively towards bypassing the kinematic singularity

without divergence.
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