
Noname manuscript No.
(will be inserted by the editor)

Nonholonomic dynamics of the Twistcar vehicle: asymptotic analysis
and hybrid dynamics of frictional skidding

Oriel Halvani · Yizhar Or

the date of receipt and acceptance should be inserted later

Abstract The Twistcar vehicle is a classic example of a
nonholonomic dynamical system. The vehicle model con-
sists of two rigid links connected by an actuated rotary joint
and supported by wheeled axles, where nonholonomic con-
straints are assumed to impose no skidding of the wheels.
Recent experimental measurements conducted with a robotic
Twistcar prototype have shown disagreements with previous
theoretical analyses. In particular, significant skidding has
been observed, in addition to discrepancies with respect to
theoretical predictions of divergence in oscillations of the
vehicle’s speed and orientation, as well as direction rever-
sal depending on the vehicle’s structure. The goal of our re-
search is to resolve this disagreement by generalizing the
theoretical analysis. First, we extend previous asymptotic
analysis by incorporating the effects of links’ inertia and os-
cillation amplitude of the input angle on the direction of net
motion. Next, we formulate the vehicle’s hybrid dynamics
under frictional bounds and skid-state transitions. Using nu-
merical analysis, we obtain optimal values for the vehicle’s
mean speed and energetic cost-of-transport as a function of
the input frequency. Our results improve the agreement be-
tween theory and experiments and suggest directions for fur-
ther experimental investigation.
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1 Introduction

1.1 Scientific background

Underactuated locomotion systems are mobile robots whose
number of degrees-of-freedom is larger than the number of
controlled inputs. Thus, they typically contain passive degrees-
of-freedom. The dynamics of such systems is often gov-
erned by nonholonomic constraints, which are non-integrable
and locally restrict the system’s feasible directions of gener-
alized velocities [1,2]. A classical example is Chaplygin’s
sleigh [3,4] which is a planar rigid body with a blade which
is restricted to slide along a body-fixed direction. The same
principle holds for vehicles with unactuated wheeled axles
which are restricted not to skid (i.e. slip in lateral direction).

In many of these nonholonomic systems, one assumes
“kinematic inputs” directly prescribing m actuated joint an-
gles or velocities, which indirectly affect the motion of all N
degrees-of-freedom through interaction with the constraints.
If the number of constraints n equals N−m, then the sys-
tem is termed ”purely kinematic”. Examples of such systems
are the Dubins’ car [5], three-wheel kinematic snake [6] and
truck-trailer(s) chains [7,8]. On the other hand, if n < N−m
then the system’s motion involves dynamics, and is gov-
erned by interaction between the nonholonomic constraints
and balance of generalized momentum variables. Examples
of such systems are the snakeboard [9,10], roller racer [11,
12], and several actuated variants of Chaplygin’s sleigh [13,
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14,15]. There have been many works on dynamics and con-
trol of nonholonomic locomotion systems, exploiting their
geometric structure for analyzing periodic control inputs [16,
17].

Another closely related type of robotic locomotion sys-
tems are articulated swimmers, where velocity relations that
are analogous to nonholonomic constraints are induced by
the fluid-swimmer interaction. For micro-swimmers, where
inertial effects are negligible, these relations originate from
imposing quasistatic equilibrium [18,19], whereas they come
from added-mass effect and momentum conservation for inertia-
dominated swimming in ideal fluid [20,21]. Several works
have analyzed such systems utilizing methods of differential
geometry [22], optimal control [23,24,25] and perturbation
expansion [26,27,28].

For wheeled vehicles moving on low-friction terrain, the
no-skid nonholonomic constraints are not always realistic.
For example, the kinematic three-wheel snake skids upon
reaching singularities at symmetric configurations, as ob-
served both experimentally [6] and theoretically [29]. Sev-
eral relaxations of the no-skid constraints have been pro-
posed and analyzed. The “skid-angle” model [30,31,32,33]
introduces skid velocities with non-dissipative constraint forces.
In contrast, assuming skidding under viscous frictional forces
[34,35] also involves energy dissipation. While those two
models involve continuously varying friction forces and skid
velocities, Coulomb’s dry friction model may induce non-
smooth behavior of dynamic skid-state transitions [29,36,
37] that also dissipate energy.

1.2 Twistcar - Review of recent relevant works

We now introduce the Twistcar toy and its simple theoretical
model, and then review three recent works with high rele-
vance. A picture of the Twistcar toy vehicle appears in Fig.
1a. A child can sit on the vehicle and generate propulsion
on level ground by simply applying periodic oscillations of
the steering handlebar. A simple planar model of the Twist-
car is shown in Fig. 1b, including all notations. The model
consists of two rigid links supported by wheeled axles, and
connected by a rotary joint. Each link has mass mi and length
li, for i = 1,2. Each link has moment of inertia Ji about
its center-of-mass ci (COM), which is located at a distance
bi from the wheels’ axle. We attach a body-fixed reference
frame to each link, such that ei is aligned with the link’s lon-
gitudinal axis while e⊥i is perpendicular to it and parallel to
link’s wheeled axle. Midpoints on the two wheeled axles are
denoted by pi. The relative angle between the links is de-
noted by φ and the absolute orientation angle of link 1 is
denoted by θ . While a mechanical torque τ is applied at the
joint through the steering handlebar, it is more convenient
to assume that the joint angle φ is directly prescribed and
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Fig. 1: (a) The Twistcar vehicle. (b) Its two-link model with
notation.

oscillates in time t as

φ(t) = φ0 + ε sin(ωt). (1)

1.2.1 Asymptotic analysis of point-mass model [27]:

The first recent relevant work is that of Chakon and Or [27].
They studied a point-mass model of the Twistcar where m2 =

0 and J1 = J2 = 0, and also assumed zero skidding (lateral
slippage) of the wheels, which implies

σ i = ṗi · e⊥i = 0 for i = 1,2 (2)

where upper dot represents time-derivative d/dt. We now
review main observations from [27]. Fig. 2 shows typical
simulation results from [27] under parameter values of l1 =
0.5m, l2 = 0.1m, b1 = 0.3m, φ0 = π , ε = 0.6rad, and ω =

1rad/s. Time plot of the speed of rear axle midpoint v1(t) =
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Fig. 2: Simulation results from the point-mass model [27]: (a) Forward speed v1(t) for two values of b1/l2, showing reversal
in direction of net motion, along with mean acceleration and oscillations. (b) Orientation angle θ(t), showing diverging
oscillations. (c) Illustration of direction reversal conditions from [27].

ṗ1 · e1 appears as solid line in Fig. 2a. It can be seen that
the mean speed has negative mean acceleration (i.e. mov-
ing backwards), with superposed oscillations of slowly di-
verging amplitude. Time plot of the vehicle’s orientation an-
gle θ(t) appears in Fig. 2b, showing that θ(t) also under-
goes oscillations of diverging amplitude. This implies that
for long-time simulations, the vehicle’s trajectories in (x,y)
plane begin to curve into flower-like loops, as also observed
in [38]. Another important effect that has been observed
and analyzed in [27] is reversal in direction of the vehicle’s
net motion depending on the vehicle’s structural parameters.
Specifically, under oscillations about the straightened con-
figuration φ0 = π , the direction of net motion depends on
the ratio of the steering link’s length l2 to the distance b1
of the body’s COM from the rear axle (see Fig. 1b). For
b1 < l2, the vehicle moves in backward direction, whereas
for b1 > l2 it moves in forward direction, see illustration in
Fig. 2c. As an example, the dashed curve overlaid in Fig. 2a
shows time plot of v1(t) for the same parameter values ex-
cept for b1 = 0.05m < l2, which gives motion in reverse di-
rection (positive). This non-intuitive phenomenon has been
analyzed in [27] using leading-order asymptotic expansion
of the point-mass model.

1.2.2 Motion measurement experiments:

The second recent work (unpublished) is a series of motion
experiments we have conducted with a robotic prototype of
the twistcar vehicle, see Fig. 3a . We used modular parts
of Actobotics series from ServoCity in order to construct
the robot’s structure. The joint was actuated by servo motor
powered by on-board lithium-ion battery, and controlled by
Arduino Mega controller. We prescribed periodic input com-
mand of steering angle φ(t) as in (1), with φ0 = 0, ε = π/6
and ω = π rad/s. Reflective markers have been attached to

the vehicle’s links, and the motion has been tracked by an ar-
ray of infrared cameras using VICON system. Fig. 3b shows
measurements of the vehicle’s forward speed v1(t) as a func-
tion of time, showing that it first accelerates from rest, and
then seems to converge to a periodic solution with bounded
oscillations about a mean value. In addition, Fig. 3c shows
measurements of the vehicle’s orientation angle θ(t), show-
ing oscillations of constant amplitude about a slowly drift-
ing mean value. This drift in orientation can be attributed
to some small calibration error in the steering angle’s servo
motor and encoder, as well as asymmetry in the wheels’ ro-
tational friction. Nevertheless, the results stand in clear dis-
agreement with the theoretical prediction in [27] of indefi-
nitely increasing mean value of v1(t), in addition to diverg-
ing oscillations of both v1(t) and θ(t), see Fig. 2a and 2b.

Next, Fig. 3d shows time plots of the measured skid ve-
locities of the rear and front wheel’s axles, σ1(t) and σ2(t).
Remarkably, one can see non-negligible skidding, with ve-
locity magnitudes ranging up to 20% of forward mean speed.
This clearly indicates that the assumption of ideal no-skid
constraints (2) is completely unrealistic and should be re-
laxed. Moreover, while σ2(t) shows alternating reversals in
skidding direction, σ1(t) seems to display a more complex
behavior of transitions between skid and no-skid states. This
suggests that a Coulomb-like model of dry friction should
be considered. Finally, in experiments where φ(t) oscillated
about straightened configuration φ0 = π , we were unable to
reproduce the phenomenon of direction reversal which was
predicted in [27] by changing the vehicle’s structure and
mass distribution. This suggests that the point-mass model
is too simplistic and one should account for the mass and
moment-of-inertia of both links.
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Fig. 3: Experimental results: (a) The robotic prototype. (b) Time plot of measured of forward speed v1(t). (c) Time plot of
measured orientation angle θ(t). (d) Time plots of measured skid velocities σ i(t).

1.2.3 Analysis of the Landshark model

The third recent relevant work is of Bazzi et al [31]. They
considered a similar two-link model dubbed as “Landshark”,
where the two links have non-negligible masses and mo-
ments of inertia, such that Ji = mil2

i and bi = 0. Varying the
mass ratio m2/m1 and length ratio l2/l1, they have identified
conditions guaranteeing that the vehicle’s momentum grows
in a sign-definite direction for any input of steering angle
φ(t). In cases where these conditions are not satisfied, they
have demonstrated a numerical simulation example where
the direction of motion can be reversed for a vehicle with
specific values of mi, li by only modulating the input’s am-
plitude and frequency of the steering angle φ(t) oscillating
about φ0 = π as in (1). This interesting effect has not been
captured by the leading-order asymptotic analysis in [27].
Finally, the work [31] also considered a relaxation of the
no-skid assumption by using the “skid-angle” model [30,32,
33] , which accounts for non-dissipative smooth changes in
the skidding velocities. However, this model still predicts
unbounded divergence of the forward speed and orientation

angle, which again disagrees with our experimental obser-
vations in Fig. 3b.

1.3 Research goal and statement of contributions

The goal of this work is to extend the theoretical model of
the Twistcar vehicle and its analysis in order to explain the
discrepancies and disagreement between previous theoreti-
cal works and the experimental measurements. More specif-
ically, we make four main contributions which are listed as
follows. First, we extend the leading-order asymptotic anal-
ysis of [27] in order to incorporate the effect of links’ in-
ertias on direction of net motion and its reversal. Second,
we derive the next-order expansion term of the vehicles’
speed in order to find necessary and sufficient conditions for
achieving direction reversal by changing only the oscillation
amplitude ε of the steering angle. Third, we generalize the
theoretical model in order to incorporate Coulomb friction
bounds and hybrid dynamics of skid-state transitions, and
show numerical simulation results that qualitatively agree
with our experimental measurements. Finally, we numeri-
cally analyze the influence of input frequency on character-
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istics of periodic motion with skid-state transitions, and ob-
tain optimal frequencies that maximize mean speed as well
as energetic efficiency.

The rest of the work is organized as follows. The next
section formulates of the Twistcar’s dynamic equations as a
nonholonomic system under ideal no-skid constraints, and
presents some numerical simulation results. Section 3 con-
ducts asymptotic analysis including links’ inertias and next-
order expansion, and highlights the effect of links’ inertias
and input’s amplitude on direction reversal. Section 4 pro-
vides expressions for normal reaction forces assuming “flat
plane” model of the vehicle, and introduces Coulomb’s fric-
tion constraints and the hybrid dynamics of skid-state transi-
tions. Section 5 presents numerical analysis of periodic mo-
tion and the influence of input’s frequency. Finally, Section
6 concludes the work.

2 Problem formulation with ideal constraints

We now present formulation of the system’s nonholonomic
dynamics under ideal no-skid constraints. We choose gen-
eralized coordinates q = (x,y,θ ,φ)T , where x,y denote the
position c1 of the COM of link 1, θ is the link’s orienta-
tion angle, and φ is the steering joint angle, see Fig. 1b. The
skidding velocities σ1,σ2 defined in (2) can be expressed as

σi = ṗi · e⊥i = wi(q) · q̇ = 0, for i = 1,2
where w1 = (−sinθ cosθ −b1 0)T ,

w2 = (−sin(θ+φ) cos(θ+φ) h1 cosφ − l2 − l2)T ,

and hi = li−bi.

(3)

Defining the matrix W(q) = [w1(q) w2(q)]T , the nonholo-
nomic no-skid constraints can be written as

W(q)q̇ = 0. (4)

The system’s constrained dynamic equations of motion
can be obtained using Euler-Lagrange derivation as (cf. [39]):

d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
= Fq +W(q)T

Λ, (5)

where L = T −U is the system’s Lagrangian, T is the total
kinetic energy, U is the potential energy, Fq is the vector of
generalized forces and Λ = (λ 1,λ 2)

T is the vector of con-
straint forces (Lagrange multipliers). Since the vehicle here
moves in horizontal plane, the system is not governed by any
changes in potential energy and U can thus be ignored. The
kinetic energy for planar motion of the 2-link system can be
obtained as

T =
1
2

2

∑
i=1

(
mi(ċi · ċi)+ Jiω

2
i
)
=

1
2

q̇tM(q)q̇, (6)

where full expressions for elements of the matrix of inertia
M(q) are given below in (8). Using (5) and (6), the equations
of motion can be written in a standard matrix form as

M(q)q̈+B(q, q̇) = Eτ +W(q)T Λ

where E = (0 0 0 1)T
(7)

and τ(t) is the actuation torque at the steering joint. Ex-
plicit expressions for the elements of M(q) and the vector
of velocity-dependent terms B(q, q̇) from (7) are given as:

M11 = M22 = m1 +m2, M12 = 0

M13 = m2(h2 sin(φ +θ)−h1 sinθ)

M14 = m2h2 sin(φ +θ), M24 =−m2h2 cos(φ +θ)

M23 = m2(h1 cosθ −h2 cos(φ +θ)

M33 = J1 + J2 +m2(h2
1 +h2

2−2h1h2 cosφ)

M34 = J2 +m2(h2
2−h1h2 cosφ), M44 = J2 +m2h2

2

B1 = m2

(
h2(φ̇ + θ̇)2 cos(φ +θ)−h1θ̇

2 cosθ

)
B2 = m2

(
h2(φ̇ + θ̇)2 sin(φ +θ)−h1θ̇

2 sinθ

)
B3 = m2h1h2φ̇(φ̇ +2θ̇)sinφ , B4 =−m2h1h2θ̇

2 sinφ

(8)

Differentiating the velocity constraints in (4) with respect to
time gives:

W(q)q̈+Ẇ(q, q̇)q̇ = 0. (9)

Combining equations (7) and (9) gives a differential-algebraic
system where the vector of constraint forces Λ can be elim-
inated, and thus the accelerations q̈ can be integrated nu-
merically under given input torque τ(t). Next, we consider
the case where the steering angle is assumed to be a directly
controlled input, so that φ(t) and all its time-derivatives are
prescribed functions. We note that the torque τ appears only
in the fourth row of (7). Thus, this row can be ignored,
so that (7) and (9) now give a 5× 5 linear system in the
unknowns {ẍ, ÿ, θ̈ ,λ 1,λ 2}, which can be numerically inte-
grated to solve for x(t), y(t) and θ(t).

We now present numerical simulation results of the Twist-
car. Physical parameter values which correspond to the robotic
vehicle in Fig. 3a are chosen as l1 = 0.36m, l2 = 0.19m,
b1 = 0.206m, b2 = 0.5l2, m1 = 2.3Kg, m2 = 0.23Kg, Ji =

mil2
i /12. The simulations are conducted under periodic in-

put of φ(t) as in (1) with φ0 = π , ε = 0.6rad and ω =

1rad/s. Initial conditions are x(0)= y(0)= θ(0)= 0, ẋ(0)=
0 while the rest of q̇(0) is determined from (4). Fig. 4a shows
a time plot of the forward speed v1(t) in solid curve, while
Fig. 4b plots the two constraint forces λi(t). The dashed
curve in Fig. 4a corresponds to v1(t) under the same pa-
rameter values except for b1 = 0.1m. It can be seen that the
condition b1 < l2 derived in [27] is no longer sufficient for
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Fig. 4: Numerical simulation results: (a) plots of forward
speed v1(t) for three examples of parameter values. (b) plots
of constraint forces λ i(t).

reversing the direction of net motion. However, changing the
mass and inertia of link 1 to m1 = 4.3, J1 = 0.025Kg ·m2

(equivalent to adding a uniform disc of mass 2Kg and radius
0.03m placed at the link’s COM), leads to direction rever-
sal as shown in the dash-dotted curve of v1(t) in Fig. 4a.
Analytical derivation of exact conditions for direction rever-
sal with masses and inertias is presented in the next section.
From Fig. 4b, it can be seen that the constraint forces λ i(t)
are diverging in time. Moreover, since λ i(t) scale as ω2 with
actuation frequency, fast oscillations of the input φ(t) re-
quire large constraint forces which may exceed friction lim-
itations, practically resulting in wheels skidding. This issue
is addressed in Section 4.

3 Reduction and asymptotic analysis

In this section we conduct reduction of the Twistcar’s dy-
namic equations of motion (7) and then present asymptotic
analysis under small oscillation amplitude ε of the steering
angle input φ(t). This is a generalization of the analysis pre-
sented in [27] for the point-mass model.

3.1 Reduction of the dynamic equations

First, we define non-dimensional parameters:

κ =
m2

m1
, α =

l2
l1
, βi =

bi

li
, ηi =

Ji

mil2
i

for i = 1,2. (10)

The system’s velocities, accelerations, forces and torques
are then normalized by characteristic scales of
{l1ω, l1ω2,m1l1ω2,m1l2

1ω2}, respectively. Time is normal-
ized by characeristic scale of 1/ω .

Next, we define body-frame velocities vx = ċ1 · e1, vy =

ċ1 · e⊥1 . The vector of generalized body velocities is then de-
fined as

vb = R(θ)T q̇, where

vb =


vx
vy
θ̇

φ̇

 and R(θ) =


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1

 . (11)

Substituting q̇ = Rvb into (7),(9) and pre-multiplying (7) by
RT , one obtains the body-frame equations of motion as:

Mb(φ)v̇b +Bb(φ ,vb) = Eτ +WT
b Λ

Wbv̇b +Ẇbvb = 0

where Mb = RT MR, Bb = RT (MṘvb+B), Wb = WR
(12)

and we used RT E = E. Note that this process eliminates the
dependence of (12) on the orientation angle θ due to invari-
ance of the system with respect to rigid-body transforma-
tion. The expressions for matrices from (12) are given as:

Mb = M(θ = 0), Wb = W(θ = 0), and

Bb = B(θ = 0)+


−(1+κ)θ̇vy
(1+κ)θ̇vx
κθ̇ (vx(δ 1−δ 2cosφ)− vyδ 2 sinφ)

−κθ̇δ 2(vx cosφ + vy sinφ)


where δi = 1−βi.

The last reduction step is elimination of the constraints
and constraint forces. This is done by defining a vector of
constraint-free velocities v f = (u v)T as:

q̇ = S(φ)v f = wu(φ)u+wv(φ)v, where

wv=


cosφ−α

β 1 sinφ

sinφ

0

,wu=


−α sinφ(1+β

2
1)

−αβ 1(α− cosφ)

−α(α− cosφ)

(α−cosφ)2+(1+β
2
1)sin2

φ


(13)

Note that the vectors wu(φ),wv(φ) are mutually orthogonal
and satisfy the constraints, that is, Wbwu = Wbwv = 0, wu ·
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wv = 0. Moreover, the choice of wu,wv implies the relation:

φ̇ =
(
(α−cosφ)2 + sin2

φ(1+β
2
1)
)

u≡ g(φ)u. (14)

Substituting (13) into (12) and pre-multiplying by ST gives
the reduced equations:

ST MbSv̇ f +ST MbṠv f +ST Bb = ST Eτ. (15)

Note that the constraint forces Λ have been eliminated from
(15). Assuming that the steering angle φ(t) is a prescribed
function of time, u(t) can be extracted from the relation (14).
Moreover, the structure of S and E implies that the steering
torque τ does not appear at the second row in equation (15).
This gives a scalar first-order differential equations that gov-
erns the dynamic evolution of the generalized unconstrained
velocity v, taking the form:

v̇ = F(v,φ , φ̇ , φ̈). (16)

The function F in (16) is highly complicated and its ex-
plicit expression is not shown here. It depends quadratically
on φ̇ , linearly on φ̈ ,v, and trigonometrically on φ . Moreover,
F is even in φ(t), which implies that:

F(v,φ , φ̇ , φ̈) = F(v,−φ ,−φ̇ ,−φ̈). (17)

Similar symmetry relation also holds about φ = π .

3.2 Asymptotic analysis - perturbation expansion

We now derive approximate solution of (16) via perturbation
expansion, assuming small amplitude ε of input oscillations.
We expand v(t) as a power series:

v(t) = v0(t)+ εv1(t)+ ε
2v2(t)+ · · · (18)

Next, we expand F(·) in (16) as

F(v,φ , φ̇ , φ̈) = F(v,φ0,0,0)+
N

∑
k=1

1
k!

DkF
∣∣∣∣
(v,φ0,0,0)

where D =

(
(φ −φ0)

∂

∂φ
+ φ̇

∂

∂ φ̇
+ φ̈

∂

∂ φ̈

) (19)

The dependence on the angle φ is expanded about φ0 ∈{0,π}.
The expansions of v̇ and F from (18) and (19) are substi-
tuted into (16), while φ(t) and its derivatives are taken from
(1) under time-scaling ω = 1. We have used symbolic com-
putations in MATLAB for this process. The resulting equa-
tion is then rearranged by different powers εk in order to
obtain a sequence of differential equations for vk(t) which
can be solved iteratively, as follows. The zero-order term
gives v̇0 = 0, hence we obtain v0(t) = v0 = const. Due to
the even-function symmetry of F(·) in (17), all odd powers
also give v̇k = 0 for odd k, hence these terms are neglected.

The ε2-terms give the leading-order dynamics of the form
v̇2(t) = F2(v0, t). Integrating in time (assuming zero initial
conditions) gives:

v2(t) = a2t +b2 sin(2t), (20)

where a2,b2 are constant coefficients that depend on the
system’s parameters, the value of φ0 = {0,π} and v0. Ex-
plicit expressions for the coefficients are given in Table 1,
where we assume starting from rest, v0 = 0, for simplicity.
Note that a2 reduces to the simple expression in [27] for
the point-mass case, by substituting κ = η1 = η2 = 0. Ex-
pansion to the next order of ε4-terms, which has not been
considered previously in [27], gives equation of the form
v̇4(t) = F4(v0,v2, t). Assuming v0 = 0, integrating in time
and substituting the expression for v2 from (20), one obtains:

v4(t) = a4t +b4 sin(2t)+d4t cos(2t). (21)

The expression for a4 appears in Table 1, whereas the lengthy
expressions for b4,d4 (associated with higher-order oscil-
lating terms) are not shown. Using (20) and (21), the ex-
pression for v(t) has oscillating parts superimposed on a
constant-rate accelerating mean part v̄(t), which is expanded
up to order 4 as

v̄(t) = v0 +(ε2a2 + ε
4a4)t +O(ε6). (22)

The mean acceleration ā= dv̄/dt of the vehicle is thus given
as:

ā = a2ε
2 +a4ε

4 +O(ε6). (23)

The influence of system’s parameters and input ampli-
tude ε on ā, and particularly on its sign reversal, is analyzed
next.

Table 1: Expressions of coefficients from (20), (21)

a2 = α
(β 2

1 +η1 +β2κ)+ζ α(κβ
2
2 +β 1 +η2κ)

2(α +1)3(κ +1)

b2 =
α (β2 κ−η1+2β1

2
κ+β1

2+2)+ζ α2 (β1−κ β2
2+2κ−η2 κ)

4(1−αζ )3 (κ +1)

a4 =
1

16(α +1)5(κ +1)2

[
α2κ

(
2+β1 +2β2 +2η1−4η2 +2β 2

1 −4β 2
2 +5β 2

1 β 2
2 −β1β2 +β2η1 +5η1η2

)
+α2

(
4η1−4β1 +4β1η1 +4β 2

1 +4β 3
1 +κ2(4β2 +η2)+κ(β 2

1 β2 +5β 2
1 η2 +5β 2

2 η1)
)

+
(
α4κ

(
β 2

2 +η2−1
)(

5κβ 2
2 +3β1 +5η2κ +2

))
+ζ α

(
β 2

1 +η1−1
)(

5β 2
1 +5η1 +2κ +3β2κ

)
+ζ α3

(
4β1 +η1 +κ2(4β2η2−4β2 +4η2 +4β 2

2 +4β 3
2 )+κ(2+2β 1 +β 2−4η1 +2η2−4β

2
1)
)

+ ζ κα3
(

2β
2
2 +5β

2
1β

2
2−β 1β 2 +β 1η2 +5η1η2 +β 1β

2
2 +5β

2
1η2 +5β

2
2η1

)]

where ζ = cos(φ0) =±1, for φ0 ∈ {0,π}.
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Fig. 5: (a) Solid curves: leading-order acceleration a2 as a function of β1 for three cases of different parameter values. Dashed
curves: numerically computed mean acceleration ā/ε2 for ε = 0.6rad. (b) Shaded region of a2a4 < 0 in the plane of κ,α ,
which corresponds to amplitude-dependent direction reversal of the Landshark model. Hatched regions satisfy necessary-
only conditions for reversal as obtained in [31]. Zoom-in inset: three points with κ = 1.8 and α = {0.5,0.57,0.75}.
(c) Solid curves: asymptotic mean acceleration a2ε2 +a4ε4 as a function of input amplitude ε for the Landshark model with
κ = 1.8 and α = {0.5,0.57,0.75}. Dashed curves: numerically computed mean acceleration ā. The case of α = 0.57 satisfies
a2a4 < 0 and thus enables direction reversal depending on amplitude ε .

3.3 Small-amplitude parameter-dependent direction
reversal

Assuming small amplitude ε � 1 of the oscillating steering
angle φ(t), the leading-order term of mean acceleration in
(23) is a2. For oscillating about φ0 = 0, substituting ζ = 1
into the expression for a2 in Table 1, it is easy to see that
it is always positive. However, oscillating about φ0 = π (i.e.
ζ = −1) gives possible conditions for sign reversal of a2
depending on the vehicle’s parameters. For simplicity, we
assume that the COM of link 2 is located at its midpoint,
β2 = 0.5. Substituting this and ζ =−1, we obtain:

a2 = α
4β1(α−β 1)−4η1−κ(2−α)+4αη2κ

8(α +1)2(κ +1)
. (24)

As an example, Fig. 5a plots the leading-order acceleration
a2 as a function of β for α = 0.5 and κ = 0 in three solid-
colored curves corresponding to three different choices of
other parameter values. Case (i) is “point-mass” model η1 =

κ = 0 as studied previously in [27]. It can be seen that the di-
rection of net motion reverses to a2 > 0 for β1 <α . Case (ii)
adds mass and uniform inertia of the links η1 = η2 = 1/12,
κ = 0.22 as in the experimental robot (Fig. 3a). It can be
seen that the effect of added inertias precludes the possibil-
ity of direction reversal (a2 < 0 for all β1). This explain the
difficulty to achieve direction reversal in our experiments.
Case (iii) corresponds to adding a uniform disc to link 1
as described previously in the numerical simulations (Fig.
4a) which corresponds to η1 = 1/22, κ = 0.1. In this case,
there is a narrow range of β1 for which the sign of a2 is
reversed. All this can be explained by the leading-order ex-
pression in (24), which highlights the separate contribution
of each parameter of links’ inertia. Finally, the dashed col-
ored curves denote mean acceleration ā/ε2 which is com-

puted via numerical simulations for input amplitude of ε =

0.6rad, showing good agreement with the leading-order ex-
pression in (24). (Mean acceleration was numerically com-
puted by taking the integrated v(t) and smoothing it using
a moving-average filter, and then applying linear regression
to the resulting smoothed signal in order to calculate mean
slope).

3.4 Amplitude-dependent direction reversal

In case where the input’s amplitude ε is not very small,
the vehicle’s mean acceleration ā depends on both a2 and
a4, as given by (23). When they differ in signs, i.e. satisfy
a2a4 < 0, for small amplitudes ε the sign of ā is determined
by that of a2, whereas for increased amplitudes the influence
of a4 causes sign reversal. The critical amplitude ε0 for sign
reversal can be obtained from (23) as

ε0 =

√∣∣∣∣a2

a4

∣∣∣∣. (25)

Moreover, for small amplitudes ε < ε0 it is easy to show that
there exists an optimal amplitude ε∗ = ε0/

√
2 for which |ā|

attains maximal value.
We now revisit the “Landshark” model and analyze the

amplitude-dependent direction reversal observed in [31]. Us-
ing the definitions in (10), the Landshark’s nondimensional
parameters are η1 = η2 = 1, β 1 = β 2 = 0, leaving only the
links’ length and mass ratio α,κ as variables. Substituting
this and ζ =−1 (i.e. oscillations about φ0 = π) into the ex-
pressions for a2 and a4 in Table 1 gives:

a2 =
α(1−ακ)

2(1+α)3(1+κ)
, a4 = α

2 κ(1−4α)+4+α

16(1+α)5(1+κ)
(26)
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Fig. 5b plots regions of ±a2,±a4 > 0 in the plane of κ,α .
The shaded area denotes region of a2a4 < 0, where amplitude-
dependent direction reversal can occur. The result extends
the analysis in [31], which only provided necessary con-
ditions for possible direction reversal. For comparison, the
hatched regions in Fig. 5b were labelled as ‘±’ in [31], and
satisfy necessary conditions for sign reversal under some in-
put of φ(t). It can be seen in Fig. 5b that these regions in-
clude the shaded regions satisfying our necessary and suffi-
cient condition a2a4 < 0. As specific examples, we fix κ =

1.8 and choose three values α = {0.5,0.57,0.75}, which are
marked by ‘×,+,∗’ in Fig. 5b, respectively. For each value
of α , we conduct numerical simulations with varying am-
plitudes ε and compare the numerically computed mean ac-
celeration ā (dashed curves) to its 4-order approximation in
(23) (solid curves), all plotted as a function of ε in Fig. 5c.
It can be seen that only the value corresponding to marker
’+’ which lies within the shaded region in Fig. 5b exhibits
direction reversal as a function of amplitude ε in Fig. 5c. In
contrast, the values corresponding to markers ’×,∗’ which
lie {inside, outside} the hatched region of [31] in Fig. 5b
do not result in direction reversal. Finally, it can be seen
from Fig. 5c that the deviations between numerical and 4th-
order asymptotic approximation (dashed and solid curves)
are vanishing for small ε and begin to increase for ε > 1, as
expected. This concludes the first part of this work, which
assumes ideal no-slip constraints. In the next section, we re-
lax this assumption using Coulomb’s friction.

4 Friction-bounded hybrid dynamics of skid-state
transitions

We now present bounds on the constraint forces of the wheel-
ground contact according to Coulomb’s friction model, and
then formulate of the vehicle’s hybrid dynamics under friction-
induced skid state transitions.

4.1 Coulomb’s friction constraints and normal forces

For each wheel’s axle, the constraint force λi has to satisfy
Coulomb’s friction bound given by

|λi| ≤ µNi (27)

where Ni is the normal reaction force acting at the axle’s
wheel(s) in ẑ direction, and µ is Coulomb’s coefficient of
dry friction. Positions of the left and right wheels on the
rear axle are denoted by p1a,p1b, see Fig. 1b. The two nor-
mal forces acting on those wheels are denoted as N1a,N1b,
such that the total normal force on the back axle is N1 =

N1a+N1b. For the front axle, the normal force N2 acts on the
single wheel positioned at p2. We now make a simplifying
assumption that the vehicle is flat and the links lie within

the horizontal xy plane with z = 0. This assumption holds
when the actual height of the links’ centers-of-mass is much
smaller than the lengths li. Under this assumption, acceler-
ations of the links in horizontal plane generate negligible
moments about the wheels-ground contact points. This im-
plies that the three normal forces {N1a,N1b,N2} are decou-
pled from the vehicle’s dynamics in xy plane and can be ob-
tained from statically-determinate equilibrium equations of
total {force, torque} balance {along z, about xy } directions,
which are written as:{

N1a +N1b +N2 = (m1 +m2)g
(p1aN1a+p1bN1b+p2N2−p1m1g−p2m2g)×ẑ=0

(28)

This is a linear 3×3 system in the unknowns {N1a,N1b,N2},
which is expressed in body-fixed frame as:(

1 1 1
d −d −l2 sinφ

0 0 l1−l2 cosφ

)(
N1a
N1b
N2

)
=

(
m1 +m2

m2h2 sinφ

m1b1+m2(l1−l2 cosφ)

)
g

(29)

The solution of (29) for normal forces depends only on the
steering angle φ . A singular case of unbounded forces oc-
curs when l1 = l2 cosφ , but this case is ruled out assuming
l1 > l2. In addition, tipover of the vehicle due to vanishing
of one normal force may also occur, characterized by the
two links’ common COM lying on the line connecting two
wheels. This case is also rare for reasonable values of the ve-
hicle’s geometric structure (more details appear in the thesis
[40]).

4.2 Hybrid dynamics with skid-state transitions

We now formulate the system’s hybrid dynamics which ac-
counts for friction bounds and transitions between skid state.
First, consider the case where the no-skid constraint (3) at
the ith wheel axle is satisfied. The constraint force λ i must
satisfy Coulomb’s dry friction inequality (27), where the
normal reaction force Ni(φ) is obtained from solving (29).
When the friction bound in (27) is reached for the ith axle,
it begins to skid, so that σi(t) = wi(q) · q̇ 6= 0, and the con-
straint force reaches its maximal value, λ i =−µ sgn(σi)Ni.

The skid states described above lead to 22 = 4 possible
“modes” of the system – combinations of the axles’ skid
states. The dynamics of each mode is governed by a differ-
ent set of equations, described as follows. First, Lagrange’s
equations (7) still hold, giving 3 scalar equations (assum-
ing φ(t) is prescribed and eliminating the third row in (7)
which also contains the torque τ(t)). However, the equation
(9) of the time-derivative of the no-skid constraints does not
always hold, and should be replaced by two equations which
depend on the skid state of each axle, given as:wi(q) · q̈+ ẇi(q, q̇) · q̇ = 0 axle i is not skidding

λ i =−µNisgn(wi(q) · q̇) axle i is skidding
(30)
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Fig. 6: Time plots of simulation results of the system’s hybrid dynamics under actuation frequency ω = 2.5 rad/s. Solid
lines - no-skid motion. Dashed lines - skidding. (a) Forward speed v1(t). (b) Vehicle’s orientation angle θ(t). (c) Forces’
ratio λ i/(µNi) vs. time for i = 1,2, overlaid with skid velocities σ i(t).

for i = 1,2. Combining equations (30) with (7) gives a sys-
tem of differential-algebraic equations which yields a 5×5
linear systems in the unknowns, {ẍ, ÿ, θ̈ ,λ 1,λ 2} for a pre-
scribed angle input φ(t).

Transitions between different modes of the hybrid dy-
namics are described as follows. A non-skidding axle begins
to skid whenever its constraint forces reaches its frictional
bound, |λ i|= µNi. When the slip velocity of a skidding axle
vanishes wi(q) · q̇= 0, the wheel may switch back to no-skid
state, provided that the constraint force at the initial instant
right after switching satisfies its bound |λ i| ≤ µNi. Other-
wise, the wheel’s slip velocity reverses its sign. All this gives
rise to a hybrid dynamical system, containing transitions be-
tween different skid states.

Singularity of the hybrid dynamic equations should also
be examined, by constructing the matrix of the linear system
which governs the dynamics under each mode of skid states,
and checking whether its determinant can cross zero. The
details of this singularity analysis appear in the Appendix,
for both cases of controlled actuation torque τ(t) or con-
trolled steering angle φ(t). Summarizing this analysis, it is
concluded that for each state that involves skidding, the sim-
plifying assumptions of point-mass model, κ = η1 = 0 from
[27], may lead to singularity. This justifies considering the
two links’ masses and inertia in our work.

5 Numerical simulation results of the hybrid dynamics

We now present numerical simulation results of the hybrid
system. The simulations are conducted using ode45 proce-
dure of MATLAB for adaptive-step integration, with event
functions for detecting zero-crossing conditions for each
mode’s termination. Parameter values are chosen based on
the robot prototype in Fig. 3a, as m1 = 2.29Kg, m2 = 0.229Kg,
l1 = 0.362m, l2 = 0.19m, b1 = 0.1249, b2 = 0.5l2, Ii =mil2

i /12
for i = 1,2, d = 0.1m and friction coefficient of µ = 0.3.

5.1 Periodic solutions with skid-state transitions

First, we show how the system’s motion converges to peri-
odic solutions with skid-state transitions. The input steer-
ing angle is φ(t) = ε cos(ωt) with ε = 0.6rad and ω =

2.5rad/s, under initial conditions of zero velocity q̇(0) = 0.
Figs. 6a,6b show time plots of the forward speed v1(t) and
orientation angle θ(t). Pieces of dashed curves represent
motion while the front axle is skidding, σ2(t) 6= 0 whereas
solid curves correspond to no-skid motion. It can be seen
that the system begins with no-skid motion and accelerates
until onset of skidding. Then the solution converges to peri-
odic motion with skid-state transitions, which contains bounded
oscillations of v1(t) and θ(t) about mean speed and orien-
tation, respectively. This result is remarkably different from
the unrealistic solution divergence of the no-skid model [27],
see Figs. 2a,2b.

Fig. 6c shows time plots of the forces’ ratio λ i/(µNi)

vs. time for i = 1,2, overlaid with the skid velocities σ i(t).
It can be seen that the constraint forces converge to periodic
solution while staying bounded by the friction inequalities
(27), in contrast to their divergence in the no-skid simula-
tion (Fig. 4b). The slip velocity of the front wheel σ2(t) is
initially zero and then becomes nonzero whenever the con-
straint forces reaches its bound |λ 2(t)| = µN2(t). The mo-
tion converges to periodic solution while the rear axle never
skids, σ1(t) = 0 since the associated constraint force is al-
ways below its friction bound, |λ 1(t)| < µN1(t). One can
see that in steady state, the angle θ(t), contact forces λ i(t)
and slip velocity σ2(t) are periodic in tp = 2π/ω . More-
over, they satisfy half-period anti-symmetry f (t + tp/2) =
− f (t) where f ∈ {φ , θ̇ ,λ i,σ i}. Symmetry of the vehicle
about φ = 0 implies that the forward speed is doubly pe-
riodic v1(t+ tp/2) = v1(t). This also agrees with the asymp-
totic analysis of the no-slip system in [27]. (See also (20)
where the frequency of forward speed is doubled).

Next, we consider simulation results with higher actu-
ation frequency of ω = 6rad/s. The system’s motion con-
verges to a steady-state periodic solution with significantly
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Fig. 7: Time plots of periodic solution of the system’s hybrid dynamics under actuation frequency ω = 6 rad/s after conver-
gence to steady-state. Solid lines - no-skid motion. Dashed lines - skidding of front axle only, σ1 = 0,σ2 6= 0. Dotted lines -
both axles are skidding, σ1,σ2 6= 0. (a) Forward speed v1(t). (b) Vehicle’s orientation angle θ(t). (c) Forces’ ratio λ i/(µNi)

vs. time for i = 1,2, overlaid with skid velocities σ i(t).

different characteristics, as shown in the time plots of Fig.
7. One can see that the rear axle now undergoes alternating
sequence of stick-slip transitions where σ1(t) switches be-
tween zero and nonzero values . On the contrary, the front
axle always slips, σ2(t) 6= 0, while its direction reverses al-
ternately, every half period. This type of motion is remark-
ably similar (qualitatively) to the experimental measurements
obtained with the robotic vehicle, see Fig. 3. Upon chang-
ing the actuation frequency, the mean value of v1(t) dis-
plays a small change (Fig. 6a and 7a). On the other hand
the oscillation amplitude of the vehicle’s orientation angle
θ(t) changes drastically (∆θ = {124◦,38◦} for ω = {2.5,6}
in Fig. {6b,7b}, respectively, where ∆θ = θ max−θ min). In
both cases, the angle θ(t) oscillates about a constant mean
value, which implies net translation along a straight line with
zero net rotation .

5.2 Influence of input frequency on performance

We now analyze the influence of input frequency ω on prop-
erties of the hybrid periodic solution. We conduct numerical
simulations under input (1) with φ0 = 0, ε = 0.6rad and fre-
quency ω that varies in small increments within the range
[0.3,8.5]rad/s. For each frequency, we simulate the hybrid
dynamics and detect the steady-state periodic solution to
which the system converges. Several performance measures
of the periodic solutions as a function of frequency ω are
plotted in Figs. 8 and 9. Fig. 8a plots the percentage that
each skid state occupies out of the period time tp = 2π/ω .
It can be seen that for low frequencies, the only existing
states are no-skid (σ1 = σ2 = 0, solid curve) and stick-skid
(σ1 = 0,σ2 6= 0, dashed curve). As the frequency ω in-
creases, the no-skid state become shorter. At ω ≈ 3.25rad/s,
the state skid-skid emerges (σ1,σ2 6= 0, dotted curve), and
its relative time duration grows with ω . At ω ≈ 3.5rad/s the
no-skid state disappears. The “noisy” values around ω = 3.5
are a result of numerical sensitivity of the event-based in-
tegration when two different events are almost coinciding.
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Fig. 8: Properties of simulated steady-state periodic solu-
tions as a function of actuation frequency ω: (a) Percentage
of each skid state out of the period time. (b) Oscillation am-
plitude of body orientation angle ∆θ = θ max−θ min.

The vertical dash-dotted lines in Figs. 8,9 represent the fre-
quencies ω = {2.5,6} from the simulations in Figs. 6 and 7,
respectively.

In the steady-state periodic solution, the body orienta-
tion angle θ(t) oscillates about a mean value θ̄ (see Fig. 6b
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Fig. 9: Peformance of simulated steady-state periodic solutions as a function of actuation frequency ω: (a) Forward distance
per cycle S (solid curve) and mean speed v (dashed). (b) Energetic cost of transport W/S.

and 7b), so that the net motion is pure translation with zero
net rotation. Fig. 8b plots the oscillation amplitude of θ(t)
as a function of frequency ω , showing that it decays with
ω . Next, we define the forward displacement per cycle as
S=(c1(t + tp)− c1(t)) · ē1, where ē1 =(cos θ̄ ,sin θ̄)T is unit
vector along the mean body orientation. The mean transla-
tion speed is defined as v = S/tp. Plots of the displacement S
(solid) and speed v (dashed) as a function of frequency ω are
overlaid in Fig. 9a. One can see direction reversals for low
frequencies, caused by large oscillation amplitudes of θ(t)
which result in large rotations ∆θ of more than a full revolu-
tion of the body orientation during cycle for ω < 0.9rad/s.
These large rotations are not physically realistic and did not
occur in the experiments (Fig. 2), as they require very small
amount of energy dissipation due to skid during the cycle.
In addition, one can see in Fig. 9a extremum points of op-
timal frequencies for which |S| and |v| are maximized. Fi-
nally, we compute the mechanical energy expenditure per
cycle W =

∫
τ(t)φ̇(t)dt. A plot the energetic cost of trans-

port W/|S| as a function of frequency appears in Fig. 9b. One
can see three minimum points of optimal energy efficiency,
corresponding to the three regions of reversed directions. If
one considers only the more practical range of sufficiently
large frequency with reasonable rotations, there are unique
optimal frequencies for maximizing distance, speed and en-
ergy efficiency. (More precisely, the frequency ω should be

replaced by the nondimensonal quantity ψ =
lω2

µg
which

represents ratio of characteristic constraint forces to normal
reaction forces. The ratio ψ actually governs the system’s
dynamic behavior. That is, increasing ω2 is equivalent to
decreasing the friction coefficient µ).

6 Conclusion

We have presented significant extensions of the theoretical
model of the Twistcar’s nonholonomic dynamics under os-

cillating steering angle. The point-mass model from our pre-
vious work [27] has been extended to include mass and in-
ertia of both links, and the asymptotic expansion enabled
studying the effect of the vehicle’s geometry and inertia pa-
rameters on reversal in direction of net motion. In addition,
carrying the asymptotic expansion to next-order correction
terms enabled discovering cases of direction reversal de-
pending on the input amplitude ε , which provides expla-
nation to results from [31] for the Landshark model. Next,
we have relaxed the no-skid assumption of ideal nonholo-
nomic constraints by considering Coulomb friction bounds
on constraint forces, and introducing hybrid dynamics of
skid-state transitions. Numerical simulations of the complex
hybrid dynamics show convergence to periodic solution with
skid-state transitions and bounded oscillations of both for-
ward speed and body orientation angle, in agreement with
previous experimental observations. Finally, the influence
of actuation frequency ω on the vehicle’s performance in
steady-state periodic solution was studied. We have found
very close optimal values of frequencies that maximize the
mean speed, travel distance per cycle, and energetic cost of
transport (energy per distance).

We now briefly discuss limitations of the current results
and sketch possible directions for future extension of the re-
search. First, while the theoretical predictions agree qualita-
tively with observations from our preliminary experiments,
a more thorough quantitative analysis of controlled motion
experiments is crucially needed in order to study effects of
actuation frequency and amplitude as well as vehicle’s struc-
tural parameters on its motion. Second, extending the small-
amplitude asymptotic analysis from Section 3 and from [27]
to the case of hybrid skid-states motion is a highly challeng-
ing analytical problem. Third, general models of frictional
contact forces and other possible mechanisms of energy dis-
sipation such as rolling resistance should be studied both ex-
perimentally and in mathematical analysis. Fourth, the sim-
plifying assumption of ”flat vehicle” with negligible height
of its COM should be relaxed in order to investigate the
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influence of COM accelerations on ground contact forces
in dynamic maneuvers. Finally, the research should be ex-
tended to account for multi-link wheeled vehicles, possibly
with passive elastic joints, as in [41,42,43].

Appendix - singularity analysis of the hybrid dynamics

The dynamics of the constrained system in (7) and (9) can
be rearranged into differential-algebraic system as:[

M −WT

W 0

]
︸ ︷︷ ︸

A

(
q̈
Λ

)
=

(
Eτ

−Ẇq̇

)
. (31)

The inertia matrix M is positive definite, except for degener-
ate cases where m2 and/or I1 vanish (κ,η1 = 0), which result
in M being only positive semi-definite (i.e. singular). Sin-
gularity of the constrained dynamics (31) depends on rank
of the 6× 6 matrix A, whose determinant is denoted ∆ . It
has been shown in [27] that this matrix has full rank (∆ 6= 0)
even for the degenerate point-mass model where κ = η1 = 0
and rank(M) = 2, as long as β 1 6= 0.

We now investigate conditions for singularity of the dy-
namics under all possible skid states, considering both cases
of controlled actuation torque τ(t) or controlled steering an-
gle φ(t). In the latter case of controlled angle, since τ ap-
pears only in the fourth row of (31), and φ(t) is no longer
unknown, both τ and φ̈ can be eliminated by removing both
fourth row and fourth column of A and reducing (31) to a
5× 5 system. If the first axle skids, σ1(t) = w1(q) · q̇ 6= 0,
the constraint in the fifth row of (31) no longer holds, and
λ 1 can be eliminated from (31). Therefore, both the fifth
row and fifth column of A should be removed. Similarly, if
the second axle skids, the sixth row and sixth column of A
should be removed. If additionally, the input is the steering
angle, the fourth row and column of A should be removed
as well. That is, each case is associated with removing the
fourth and/or fifth and/or sixth row and column from A. This
results in n×n matrix for n ∈ {3,4,5,6}, which is still pos-
itive semi-definite. Singularity of each case can be assessed
by analyzing the determinant ∆i jk of the matrix obtained by
removing the {i, j,k}th rows and columns of A. (For exam-
ple, we denote ∆4, ∆56, ∆456 etc.). For convenience, the ma-
trix A is calculated using the nondimensional quantities de-
fined in (10). Due to rotational invariance of (31), evaluation
is made for θ = 0 without loss of generality. Expressions for
the n×n determinants for all cases are given in Table 2. Con-
ditions for singularity in all possible skid states and choice
of controlled input are summarized in Table 3. We assume
that α ∈ (0,1) and β 1,β 2 ∈ [0,1], but alternative limits can
be considered as well. The results in Table 3 show that in
most of the skid states, the overly simplifying assumptions
of massless link (κ = 0) and/or point masses (ηi = 0) lead

to singularity of the dynamics, where wither accelerations
or constraint forces may grow unbounded.

References

1. A. Bloch, J. Baillieul, P. Crouch, J. E. Marsden, D. Zenkov, P. S.
Krishnaprasad, and R. M. Murray, Nonholonomic mechanics and
control. Springer, 2003, vol. 24.

2. J. I. Neimark and N. A. Fufaev, Dynamics of nonholonomic sys-
tems. American Mathematical Soc., 2004, vol. 33.

3. S. Chaplygin, “Collected works. vol. 3. the theory of the motion
of non-holonomic systems: Examples of the use of the reducing
factor method,” 1950.

4. S. Stanchenko, “Non-holonomic Chaplygin systems,” Journal of
Applied Mathematics and Mechanics, vol. 53, no. 1, pp. 11–17,
1989.

5. D. G. Macharet, A. A. Neto, V. F. da Camara Neto, and M. F.
Campos, “Nonholonomic path planning optimization for Dubins’
vehicles,” in 2011 IEEE International Conference on Robotics and
Automation. IEEE, 2011, pp. 4208–4213.

6. E. A. Shammas, H. Choset, and A. A. Rizzi, “Geometric mo-
tion planning analysis for two classes of underactuated mechanical
systems,” The International Journal of Robotics Research, vol. 26,
no. 10, pp. 1043–1073, 2007.

7. D. Tilbury, R. M. Murray, and S. S. Sastry, “Trajectory genera-
tion for the N-trailer problem using Goursat normal form,” IEEE
Transactions on Automatic Control, vol. 40, no. 5, pp. 802–819,
1995.

8. Y. Nakamura, H. Ezaki, Y. Tan, and W. Chung, “Design of steering
mechanism and control of nonholonomic trailer systems,” IEEE
Transactions on Robotics and Automation, vol. 17, no. 3, pp. 367–
374, 2001.

9. A. M. Bloch, P. Krishnaprasad, J. E. Marsden, and R. M. Mur-
ray, “Nonholonomic mechanical systems with symmetry,” Archive
for Rational Mechanics and Analysis, vol. 136, no. 1, pp. 21–99,
1996.

10. J. Ostrowski, A. Lewis, R. Murray, and J. Burdick, “Nonholo-
nomic mechanics and locomotion: the snakeboard example,” in
Robotics and Automation, 1994. Proceedings., 1994 IEEE Inter-
national Conference on. IEEE, 1994, pp. 2391–2397.

11. P. Krishnaprasad and D. P. Tsakiris, “Oscillations, SE(2)-snakes
and motion control: A study of the roller racer,” Dynamical Sys-
tems: An International Journal, vol. 16, no. 4, pp. 347–397, 2001.
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