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One of the most efficient actuation methods of robotic microswimmers for biomedical applications
is by applying time-varying external magnetic fields. In order to improve the design of the swimmer
and optimize its performance, one needs to develop simple theoretical models that enable explicit
analysis of the swimmer’s dynamics. This paper studies the dynamics of a simple microswimmer
model with two magnetized links connected by an elastic joint, which undergoes planar undulations
induced by an oscillating magnetic field. The nonlinear dynamics of the microswimmer is formu-
lated by assuming Stokes flow and using resistive force theory to calculate the viscous drag forces.
Key effects that enable the swimmer to overcome the scallop theorem and generate net propulsion
are identified, including violation of front-back symmetry. Assuming small oscillation amplitude,
approximate solution is derived by using perturbation expansion, and leading-order expressions for
the swimmer’s displacement per cycle X and average speed V are obtained. Optimal actuation
frequencies that maximize X or V are found for given swimmer’s parameters. An ultimate optimal
choice of swimmer’s parameters and actuation frequency is found, for which the average swimming
speed V attains a global maximum. Finally, the theoretical predictions of optimal performance
values are validated by comparison to reported experimental results of magnetic microswimmers.

Recent technological progress in manufacturing of
nano- and micro-systems has led to a growing interest
in developing micron-scale robotic swimmers which are
greatly inspired by locomotion capabilities of swimming
microorganisms [1]. Such robots have a promising po-
tential in biomedical applications, for performing tasks
such as targeted drug delivery, intravenous tumor de-
tection, and minimally invasive microsurgical operations
[2]. One of the most efficient techniques for actuation
of robotic microswimmers is by applying time-varying
external magnetic fields [3]. The power density of mag-
netic actuation has been found suitable to micron-scale
biomedical applications and simplifies the design of the
swimmer, which does not have to carry energy resources
and actuators. One of the pioneering prototypes of a
magnetically-actuated microswimmer has been presented
in 2005 by Dreyfus et al [4]. This microswimmer consists
of a chain of spherical magnetic particles connected by
flexible DNA links, and propulsion is generated by pla-
nar travelling-wave undulations of its body, which are
induced by a planar oscillating magnetic field. Later
on, other microswimmers have been designed, which
are actuated by a rotating magnetic field that induces
corkscrew-like propulsion [5, 6]. Some of these proto-
types are made of rigid nano-helices [6, 7] some consist
of particles connected by a flexible nanowire [5], and some
even use an elastic filament made of real bacterial flag-
ellum [8]. The dynamics of this type of microswimmers
has recently been analyzed theoretically in [9–11]. While
the aforementioned microswimmers maintain a constant
rigid-body shape during their motion, the microswim-
mer of Dreyfus et al [4] employs a different mode of
locomotion in which the swimmer’s internal shape un-
dergoes planar undulations. Such swimmers have been
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theoretically analyzed in [12–14], where the elastic body
is modelled as a continuous deflecting beam. The re-
sulting formulations are highly complicated and involve
partial differential equations where most of the analysis
is conducted for extreme cases, or by using numerical
simulations. The goal of this work is to study a lumped-
parameter simplified version of the microswimmer model
in [4], which is amenable to explicit analysis that provides
physical insights into the influence of governing physical
parameters. Inspired by insights gained from Purcell’s
classical three-link swimmer [15–17] and later simplistic
models such as [18–20], our model consists of only two
rigid links connected by a passive elastic joint. This is
perhaps the simplest possible model of a microswimmer
which is capable of swimming by performing planar un-
dulations induced by external magnetic actuation.

The microswimmer model is shown in Fig. 1(a). It
consists of two elongated cylindrical links with equal
lengths l and radii a. The links are connected by a
flexible rotary joint with torsional spring constant k, so
that the internal torque acting at the joint is given by
τ=− kϕ where ϕ denotes the relative angle between the
links. Only planar motion of the swimmer in x−y plane is
considered, while all rotations are about the perpendic-
ular direction ẑ. The two links are magnetized such that
the directions of their magnetization moments are aligned
with the links’ longitudinal axes, denoted by t1 and t2.
The magnetization strengths of the two links are denoted
by h1 and h2. A time-varying external magnetic field is
applied, which is given by B(t)=bx(1, ε sin(ωt))

T . That
is, B(t) has a constant component in x direction while
its component in y direction is oscillating at a frequency
ω. The external torque (moment) acting on the ith link
due to the magnetic field is given by Mi=hiti×B, where
magnetic dipole-dipole interaction between the two links
is neglected for simplicity (it decays with the distance d as
1/d3). The swimmer is submerged in a Newtonian fluid
with viscosity µ, and is assumed to be neutrally buoyant



2

1

2

ϕ

θ
h1

h2

k

(x,y)

x

y

(a)

−10 0 10

−10

0

10

θ(t) [deg]

φ
(t
)
[d
eg
]

(b)

0 0.1 0.2 0.3

−0.08

−0.04

0

0.04

0.08

x/l

y
/
l

X

(c)

FIG. 1: (a) The two-link microswimmer model; Simulated trajectories: (b) in ϕ−θ plane, and (c) in x−y plane.

so that gravity has no effect on its motion. Due to its
small scale, the swimmer is governed by low Reynolds
number hydrodynamics where viscous forces dominate
while inertial effects are negligible. The net forces and
torques acting at the links’ centers due to viscous drag
are approximated by using resistive force theory for slen-
der bodies [21, 22] as

f i = −ctl(ui · ti)ti − cnl(ui · ni)ni

Mi = −cnl
3

12
ωi

(1)

for i=1, 2, where ct=
2πµ

ln(l/a) is the viscous resistance in

the link’s axial direction ti and cn=2ct is the viscous
resistance in the normal direction ni, ui is the linear
velocity of the i-th link’s center, and ωi is its angular
velocity.
Using terminology of robotic locomotion theory [23,

24], the robot’s coordinates q=(qb, ϕ) can be divided into
body position variables qb and shape variables, which in
our model consist only of the joint angle ϕ. The body
position is given by qb=(x, y, θ) where x, y are chosen as
the position of link 1’s center while θ denotes its orienta-
tion angle. Expressing the hydrodynamic forces/torques
in (1) as a function of the coordinates q and velocities q̇,
the conditions of zero net force and torque on each link
then give rise to the nonlinear equations of motion of the
swimmer, which have the general form:

q̇b = A(q)ϕ̇+B(q)Fext

ϕ̇ = C(q)Fin +D(q)Fext ,
(2)

where Fin are internal actuation forces/torques at the
joints (exerted by motors or springs), and Fext denote
external forcing terms (e.g. due to magnetic actuation
or gravity). Combining the two equations in (2) and us-
ing the expressions for the magnetic torques and the tor-
sion spring, the equation of motion can be rewritten in a
more explicit structure that emphasizes the contribution
of each effect as:

q̇ = w0(q)kϕ+w1(q)τ1(q, t) +w2(q)τ2(q, t) , (3)

where τi(q, t) = hiẑ · (ti(q)×B(t)) is the magnetic torque
acting on the ith link for i = 1, 2.

The structure of the equations of motion in (2) and
(3) gives some insights about the swimming capabilities
of this model, as follows. First, (2) indicates that in
the absence of external forcing Fext=0, the swimmer can
only perform reciprocal motion under bounded motion
of the single shape variable ϕ(t). This is precisely the
famous scallop theorem coined by Purcell [15]. An ex-
ception of this rule occurs when the angle ϕ is allowed
to grow unbounded, and this is precisely the effect which
is harnessed for generating forward motion of corkscrew-
like swimmers such as E. Coli bacteria [15, 25] by con-
stantly rotating a single actuated joint. The addition of
external actuation Fext enables the swimmer to overcome
the scallop theorem and generate net motion even when
the joint angle ϕ undergoes periodic oscillations, similar
to the gravity-induced motion of the two-link swimmer
model in [18]. Nevertheless, the structure of equation (3)
indicates that adding external actuation is not always
sufficient for swimming, since at least two of the three
vector fields {w0(q),w1(q),w2(q)} are required to have
nonzero contribution in order to generate non-reciprocal
motion. That is, the swimmer should at least have either
an elastic joint and a single magnetized link, e.g. k, h1 ̸=0
and h2=0, or two magnetized link and a free joint, e.g.
k=0 and h1, h2 ̸= 0. Another special case, which cannot
be directly seen from (3), occurs when the two links have
equal magnetization strengths h1=h2 while k > 0. In
this degenerate case where the swimmer possesses com-
plete front-back symmetry, all solution trajectories of (3)
converge asymptotically to the attractive invariant sub-
space ϕ=0, at which reciprocal motion is obtained with
zero net motion. Physically, this motion corresponds to
pure rotation of the swimmer about the hinge while the
straightened configuration ϕ=0 is rigidly maintained but
the joint exerts zero torque. This observation is closely
related to the findings in [12, 13] which state that the
front-back symmetry of the magnetic swimming filament
must be somehow violated in order to generate net mo-
tion, either by local changes in elasticity or by attaching
the large cargo (red blood cell) to the filament’s end.
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FIG. 2: Normalized (a) displacement X
ε2l and (b) speed V

ε2l/tm
vs ω for ε=0.4. Dashed curves are the leading-order

expressions. Dash-dotted vertical lines are optimal frequencies ωx and ωv for α=5. (c) Maximal speed V (ωv)
normalized by ε2l/tm, in case I– as a function of α (dashed), in case II– as a function of β (solid).

As a simulation example, numerical integration of (3)
under initial conditions q(0)=0 and parameter values of
l=1, k=0.3, h1=0, h2=1, bx=1, ε=0.4 and ω=1 produces
the solution trajectories of q(t) in θ−ϕ and x−y planes
as shown in Fig. 1(b) and 1(c), respectively. It can be
seen that the solution of θ and ϕ rapidly converges to
a periodic trajectory of cyclic undulation whereas the
swimmer’s linear motion consists of oscillations in y di-
rection combined with net forward progress in x direc-
tion, which is aligned with the constant magnetic field
bx. Animation of this swimming motion is shown in the
supplementary movie file [27]. The results demonstrate
how external actuation combined with joint’s elasticity
enable this two-link microswimmer to overcome the scal-
lop theorem and generate net forward displacement, as
explained above.
In order to analyze the microswimmer’s dynamics, we

first identify characteristic time scales and use them to
non-dimensionalize the equations of motion. The first
time scale is associated with the response of a rigid
straight swimmer with ϕ=0 and a single magnetized
link, i.e. h1=0, under a constant magnetic field, i.e.
B=(bx, 0)

T . In this case, the dynamics of the orientation

angle θ(t) is obtained as θ̇= − 1
tm

sin θ, where tm= 4ctl
3

3bxh2

is the visco-magnetic characteristic time. For small ini-
tial orientations θ0 ≪ 1, the angle decays to zero as
θ(t)=θ0e

−t/tm so that the swimmer aligns with the di-
rection of the constant magnetic field. Next, we consider
the response of the swimmer’s internal joint angle ϕ un-
der zero magnetic field B=0 and elastic spring k > 0. In
this case, the dynamics of the joint angle ϕ(t) is governed

by the equation ϕ̇= − 6k(3+cosϕ)
ctl3(3−cosϕ)ϕ. Under small devia-

tions from the equilibrium state ϕ=0, the solution decays

as ϕ(t)=ϕ0e
−t/tk where tk=

ctl
3

12k is the visco-elastic char-
acteristic time. In what follows, the time t is normalized
by the characteristic time tm, and the two nondimen-
sional parameters α=tm/tk and β=h1/h2 are introduced.
Without loss of generality, it is assumed that |h1| ≤ |h2|,
which implies that |β| ≤ 1. We focus on three different
cases: in case I, only one link of the swimmer is mag-

netized, β=0. In case II, both links are magnetized but
there is no torsion spring at the joint, α=0. Finally, in
case III there are two magnetized links and a torsion
spring, i.e. α, β ̸= 0.

An important observation which has already been
made in [4, 13] is that the swimmer’s motion is signif-
icantly affected by the actuation frequency ω. As a nu-
merical example, Figs. 2(a) and 2(b) plot the swimmer’s
net x-displacement per cycle X and the average speed
V= ω

2πX, respectively, as a function of ω for case I (β=0)
and bx=1, ε=0.4, under several values of α. Interest-
ingly, it can be seen that for each value of α there exists
an optimal frequency that maximizes X and a different
optimal frequency that maximizes V . Moreover, a closer
look into Fig. 2(b) indicates that there exists a unique
combination of stiffness α and frequency ω for which the
average speed V attains a global maximum.

In order to analytically study the influence of frequency
and of the microswimmer’s parameters on its perfor-
mance, approximate expressions for the dynamics and
its solution are obtained analytically under small oscilla-
tions of the external magnetic field, by using perturbation
expansion [26]. Thus, it is assumed that ε≪ 1 and the
solution q(t) of (2) is expanded into a power series in ε
as q(t)=εq(1)(t) + ε2q(2)(t) + ε3q(3)(t) + . . . . Since the
dynamics of θ, ϕ in (3) is independent of the other com-
ponents x, y, its first-order expansion in normalized time
is obtained as the 2×2 linear system:[

θ̇(1)
ϕ̇(1)

]
=

[
−5β + 3 0.5α+ 3
8β − 8 −α− 8

] [
θ(1)
ϕ(1)

]
+

[
5β − 3
−8β + 8

]
sin(ωt).

(4)
The solution of (4) consists of harmonic terms in ωt and
transient terms of the form cie

λit where λ1,2 are the
eignevalues of the 2×2 matrix in (4). In order for the
latter terms to decay to zero, the linear system in (4) is
required to be asymptotically stable, i.e. Re(λ1,2) < 0.
This implies two inequalities on the parameters α, β as

α+ 5β + 5 > 0 and α+ 16β + αβ > 0. (5)

For cases I or II, the system is stable iff α > 0 or β > 0,



4

respectively. This is because alignment of a magnetized
link with the external field is equivalent to a stabilizing
spring, hence the two angles θ, ϕ can be stabilized either
by one torsion spring and one “magnetization spring”
(case I), or by two “magnetization springs” (case II).
Nevertheless, for case III where α, β ̸= 0, the stability
conditions (5) are also met for some values where either
α < 0 or β < 0. The physical meaning of α < 0 is that
the torsional spring is destabilizing, i.e. k < 0, while
β < 0 means that links’ magnetization moments are in
opposite directions.
Next, the leading-order solution for the swimmer’s for-

ward motion x(t) is computed [28]. Using perturbation
expansion of (2), it can be shown that the first-order solu-
tion for x(t) vanishes since ẋ(1) = 0, while its second-order
dynamics is given by:

ẋ(2) =
l

2

[
−(β + 1)θ2(1) − ( 14α+ 3)ϕ2

(1) + (β − 4)θ(1)ϕ(1)

+((β + 1)θ(1) + (−β + 3)ϕ(1)) sin(ωt)] .
(6)

Substituting the first-order solution of (4) into (6) and in-
tegrating in time, one obtains the solution for x(2)(t). Ig-
noring the transient terms that decay as eλit, the steady-
state solution has the form:

x(2)(t)=A(ω, α, β) sin(2ωt+φ(ω, α, β))+Ṽ (ω, α, β)t. (7)

That is, the leading-order expression for forward progress
x(t) consists of periodic terms in double frequency 2ω
and a linear term which is precisely the swimmer’s for-
ward motion with average speed of ε2Ṽ . It can also be
shown that the third order dynamics of x(t) vanishes due
to symmetry considerations, i.e. ẋ(3)=0. The explicit
leading-order expressions for the average speed V and
the net displacement per cycle X=2π

ω V are given by

X = ε2l
2πω(1− β)(α+ 16β + αβ))

Ψ(ω, α, β)
+O(ε4)

V = ε2
l

tm

ω2(1− β)(α+ 16β + αβ))

Ψ(ω, α, β)
+O(ε4)

(8)

where

Ψ(ω, α, β) = ω4 + (α2 + 8αβ + 8α+ 25β2 + 18β + 25)ω2

+ α2β2 + 2α2β + α2 + 32αβ2 + 32αβ + 256β2.

These leading-order approximations of X and V as a
function of ω are plotted as dashed curves in Figs. 2(a)
and 2(b), respectively, for case I (β=0) with ε=0.4, under
several values of α. Comparing to the values appearing in
solid curves which were obtained from numerical integra-
tion, it is seen that the leading-order expressions are very
good approximations that slightly over-estimate the ex-
act values of X and V . When ε is further decreased, the
discrepancy between the exact and approximate solutions
is vanishing. The expressions in (8) also confirm the pre-
vious observation that the net forward motion vanishes
in the cases where β=1, or α=β=0. Thus, at least one of

two effects is necessary for swimming: either joint elas-
ticity (case I) or two nonzero (yet unequal) links’ mag-
netization strengths (case II).

Next, optimal actuation frequencies are derived. Using
simple calculus for maximizing the expressions in (8), two
different optimal actuation frequencies ωx and ωv (nor-
malized by 1/tm) are found, for which X and V , respec-
tively, are maximized. The optimal frequencies depend
on the swimmer’s parameters α and β as follows. Fre-
quency ωx is obtained as the positive real solution of the
bi-quadratic equation

3ω4
x + (α2 + 8αβ + 8α+ 25β2 + 18β + 25)ω2

x

−α2β2 − 2α2β − α2 − 32αβ2 − 32αβ − 256β2=0.
(9)

Frequency ωv is given by

ωv =
√
α+ 16β + αβ. (10)

As an example, the values of ωx=0.523 and ωv=
√
5 in

case I (β=0) for α=5 are plotted as the dash-dotted ver-
tical lines in Figs. 2(a) and 2(b), respectively. One can
see that X and V indeed attain maximal values at ωx

and ωv.
Finally, we study optimization of the swimmer with

respect to the parameters α and β. From Fig. 2(a),
it can be seen that for case I (β=0), the maximal dis-
placement X(ωx) increases upon decreasing α, where an
upper bound of X(ωx) ≈ 0.63lε2 is obtained for α→ 0.
Nevertheless, the optimal frequency from (9) is vanish-
ing ωx → 0 in a non-differentiable way at α=0, which
implies infinitely long period times. Thus, the limiting
case of α=0 is not only mathematically ill-defined, but
also physically meaningless. Similar observation holds for
X(ωx) in cases II and III. On the other hand, the max-
imal speeds V (ωv) as a function of α in case I and of β
in case II are plotted in Fig. 2(c). It is clearly seen that
there exist finite optimal choices of the parameters α or
β for which V (ωv) attains a global maximum. Moreover,
the plot also indicates that in terms of larger speed V ,
case II is better than case I. As for the combined case
III in which α, β ̸= 0, a contour plot of V (ωv) in α−β
plane is shown in Fig. 3. Again, it is seen that there ex-
ists a unique optimal choice of α and β which maximizes
V (ωv). The shaded region in the plot is the parameters
region for which the straight solution of ϕ=θ=0 is unsta-
ble according to the inequalities in (5), indicating that
the optimal point lies within the stable region. The op-
timal parameter values can also be found explicitly by
simply applying multivariate calculus to the expression
for V in (8), as follows. For case I where β=0, the opti-

mal values are α=5 and ωv=
√
5, and the resulting max-

imal speed is V=0.05ε2l/tm. For case II where α=0,
the optimal values are β = 1

3 and ωv = 4√
3
, and the re-

sulting maximal speed is V = 0.08ε2 l
tm

. Thus, using a
swimmer with a free joint and optimal magnetization dif-
ference of 3 :1 between the links gives an increase of 60%
in the swimming speed compared to case I of a single
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FIG. 3: Contour plot of the normalized swimming speed
V (ωv)
ε2l/tm

in α−β plane for case III.

magnetized link and a torsion spring. That is, consid-
ering the isolated contribution of each of the two effects
of elasticity α (case I) and magnetization of two links β
(case II), the latter effect is much more significant. Fi-
nally, for case III where α, β ̸=0, the optimal values are
α ≈ −2.7, β ≈ 0.45, ωv ≈ 1.82, and the resulting max-
imal speed is V ≈ 0.0873ε2l/tm. Importantly, in this
case the torsion spring is destabilizing (α < 0), but the
overall stability conditions (5) are still satisfied. That
is, the fastest swimmer design consists of two unequally
magnetized links and a destabilizing torsion spring. An
example of implementing an effectively destabilizing tor-
sion spring by using a pre-loaded linear spring is given
below. While the design of such a mechanical arrange-
ment in practice might be quite challenging, it results in
a significant (9%) increase in swimming speed compared
to case II.

We mow briefly discuss a possible mechanical imple-
mentation of an effectively destabilizing torsion spring,
as shown in the two-link swimmer model in Fig. 4.
The rotary joint is passive (torque-free), and a linear

spring with stiffness constant k̃ and free length l0 is con-
nected to the two links at distances b from the joint. It
is assumed that the plane of the linear spring is in off-
set from the links and the joint so that no interference
occurs at ϕ = 0. The elastic potential energy of the
spring is given by U(ϕ)= 1

2 k̃(b
√
2 + 2 cosϕ − l0)

2. The
torque exerted by the linear spring about the joint is
τ(ϕ)=− dU

dϕ , and its Taylor expansion about ϕ=0 is given

by τ(ϕ)=− 1
2 k̃b(l0−2b)ϕ+O(ϕ3). Thus, to leading order,

the linear spring is equivalent to a torsion spring τ=−kϕ
with effective first-order stiffness of k= 1

2 k̃b(l0−2b). One
can see that if l0>2b, i.e. the spring is under compression
at ϕ=0, then k>0 and the straightened configuration is
stable. On the other hand, if l0 < 2b, i.e. the spring is
under tension at ϕ = 0, then k< 0 and the straightened
configuration is unstable. Thus, stability or instability of
the effective torsion spring at ϕ=0 is can be determined

ϕk, l0

x

b

b

~

FIG. 4: A mechanical implementation of an effectively
destabilizing torsion spring.

by the choice of the spring’s unstressed length l0.
Finally, we compare the results of our theoretical

model to reported experimental results of robotic mi-
croswimmers from the literature. Importantly, note that
comparison can only be made with swimmers in which
the forward speed is proportional to ε2, where ε=by/bx is
the ratio of constant to oscillating/rotating components
of the magnetic field. Therefore, all microswimmers com-
posed of a rigid helix such as [6, 7], for which motion
can be generated even for bx=0, are not comparable to
our model. We thus consider only two experimental mi-
croswimmers: the planar chain of DNA-linked beads of
Dreyfus et al [4, 13] and the flexible rotating nanowire of
Pak et al [5]. Each of these microswimmers is actuated
at a frequency f=ω/2π in Hz, which is the frequency of
oscillations (Dreyfus) or rotation (Pak). The reported
swimming speeds V are normalized by the total body
length L and the frequency f . The resulting quantity
V/Lf is precisely the net displacement per period X.
Two optimal values were reported for each microswim-
mer – maximal normalized speed V/Lf which is equiv-
alent to maximal displacement X∗, and maximal speed
V ∗. These two maximal values were attained at two dif-
ferent frequencies, fx and fv. This observation agrees
with the theoretical prediction of our model, see Figs.
2(a)-(b). The reported maximal displacements X∗ were
compared to the results of our theoretical model for which
L=2l, where X attains an upper bound of X∗≈0.31ε2L
at the non-physical limit of vanishing frequency ωx→ 0.
The reported maximal speeds V ∗ were compared to the
theoretical upper bound of V ∗/Lfv ≈ 0.15ε2, which was
obtained in case III where α, β ̸=0. Comparison of the
results is summarized in Table I. One can see that the
reported experimental values of maximal displacement
and speed are below the optimal values according to our
theoretical model, yet they are in the same order of mag-
nitude. Nevertheless, we have found it difficult to draw
concrete guidelines for practically improving the perfor-
mance of the microswimmers prototypes by modification
of their structure, elasticity, and/or actuation frequency.
The main reason for this difficulty was our inability to ob-
tain physical values of the visco-magnetic characteristic
time tm and visco-elastic time tk for the microswimmers
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Microswimmer L (µm) ε=by/bx
X∗

ε2L
fx (Hz) V ∗

ε2Lfv
fv (Hz)

Dreyfus et al [4, 13] 24 10.3/8.9 =1.16 0.068 10 0.031 4

Pak et al [5] 5.8 10/9.5 =1.05 0.149 15 0.093 35

Our model 2l 0.31 ωx→0 0.15 0.29/tm

TABLE I: Comparison of experimental magnetic microswimmers to our theoretical model. (For the microswimmer
of Dreyfus et al, values of X∗ and fx are taken from [4] and from Table 1 in [5], while values of V ∗ and fv are taken

from [13].)

in [4, 5, 13], since it was impossible to extract data about
the analogues of particles’ magnetization hi, lumped tor-
sion stiffness k and resistive drag coefficient ct. Thus, we
could not match the reported optimal frequencies fx and
fv in [4, 5, 13] to the theoretical values predicted by our
model.
In summary, we have introduced the simplest possible

model of a microswimmer which swims by performing
planar undulations induced by external magnetic actu-
ation. Using resistive force theory and perturbation ex-
pansion under small-amplitude oscillations, the nonlinear
dynamics of the swimmer has been formulated, and de-
pendence of the swimmer’s performance on its physical
parameters and actuation frequency has been explicitly
analyzed. Optimal frequencies that maximize displace-
ment per cycle X or average speed V for a given swim-
mer has been found, and optimal choices of swimmer’s
parameter that give fastest swimming were derived. It
has been found that the effect of difference in links’ mag-

netization on V is more significant than that of elasticity,
and that the fastest swimmer consists of a combination
of unequally magnetized links and a destabilizing torsion
spring. Comparison of the theoretical predictions with
reported experimental results of magnetically-actuated
microswimmers suggests that their performance is sub-
optimal and improvements might be possible.

Many effects which are present in every realistic
biomedical microswimmer have been neglected in our
simplistic model, including hydrodynamic and magnetic
interactions, dragging a large cargo, elasticity of a contin-
uous filament, and non-Newtonian fluid rheology. While
extensions that account for some of these features are
currently under our investigation, conveying the results
and insights learnt from simplistic mathematical models
into efficient design, optimization and control of real mi-
croswimmers remains a challenging and important open
problem in this research field.
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